Lipase Immobilized on Magnetic Nanoparticles: A New Tool for Synthesis of Disulphide Compounds

Read  full  paper  at:

The study describes chemo-enzymatic synthesis of organic disulphide compounds. The reaction was initiated by hydrolysis of thiol acetates using hydrolytic enzyme lipase (PPL) immobilized on to magnetic nanoparticles and subsequent formation of organic disulphide compounds. Lipase was immobilized on to the magnetic nanoparticles by co-precipitation method via epichlorohydrin chitosan cross-linking, under mild and eco-friendly conditions. The immobilized lipase enzyme exhibited broad range of substrate specificity in synthesizing disulphide compounds, which involves both intra and inter-molecular disulphide bond formation under anaerobic conditions. The disulphide compounds synthesized also show a promising antimicrobial activity.

Cite this paper

Haritha, V. , Meshram, H. and Rao, A. (2015) Lipase Immobilized on Magnetic Nanoparticles: A New Tool for Synthesis of Disulphide Compounds. Green and Sustainable Chemistry, 5, 25-30. doi: 10.4236/gsc.2015.51004.


[1] James, P.T., Cui, R.W., Wen, L and Jing, W.Z. (1991) Disulfide Bond Formation in Peptides by Dimethyl Sulfoxide. Scope and Applications. Journal of the American Chemical Society, 113, 6657-6662.
[2] Zhengkai, L., Fang, K., Hang, D., Hualong, X., Haifeng, X and Xiangge, Z. (2013) Synthesis of Disulfides and Diselenides by Copper-Catalyzed Coupling Reactions in Water. Organic & Biomolecular Chemistry, 11, 2943-2946.
[3] Rudolf, M., Stephan, K., Thomas, L., Hanno, L., Thomas, E. and Bernd, G. (1984) Applications of Synthetic Peptides. Angewandte Chemie, 24, 719-727.
[4] Carolyn, S.S. and Chris A.K. (2002) Formation and Transfer of Disulphide Bonds in Living Cells. Nature Reviews Molecular Cell Biology, 3, 836-847.
[5] Leena, K., Pankaj, K., Chandramukhi, S.P. and Siva, S.P. (2013) Synthesis of Various S-S Linked Symmetric Bisazaheterocycles: A Review. Mini-Reviews in Organic Chemistry, 10, 268-280.
[6] Wilkes, B.C., Hruby, V.J., Castrucci, A.M., Sherbrooke, W.C. and Hadley, M.E. (1984) Synthesis of a Cyclic Melanotropic Peptide Exhibiting both Melanin-Concentrating and -Dispersing Activities. Science, 224, 1111-1113.
[7] Hiram, F. G. (1997) Protein Disulfide Isomerase and Assisted Protein Folding. The Journal of Biological Chemistry, 272, 29399-29402.
[8] Harshadas, M. (1993) An Efficient and Mild Cleavage of Thiol Acetate with Clayfen in the Absence of Solvent. Tetrahedron Letters, 34, 2521-2522.
[9] Szajewski, R.P and Whitesides, G.M. (1980) Rate Constants and Equilibrium Constants for Thiol-Disulfide Interchange Reactions Involving Oxidized Gluthathione. Journal of the American Chemical Society, 102, 2011-2026.
[10] Ayodele, E.T., Olajire, A.A., Amuda, O.S. and Oladoye, S.O. (2003) Synthesis and Fungicidal Activity of Acetyl Substituted Benzyl Disulfides. Bulletin of the Chemical Society of Ethiopia, 17, 53-60.
[11] Field, L. and Oae, S. (Ed.) (1977) Organic Chemistry of Sulfur. Plenum, London, 205.
[12] Sato, T., Otera, J. and Nozaki, H. (1990) Activation and Synthetic Applications of Thiostannanes. Efficient Conversion of Thiol Acetates into Disulfides. Tetrahedron Letters, 31, 3595-3596.
[13] Anthony, P.B., John, A.M., Christopher, W.P and Nicholas, F.W. (1993) Radical-Induced Fragmentations of Ketoepoxides. Tetrahedron, 49, 10643-10654.
[14] Bhaskar, R.A., Rehman, H., Krishnakumari, B. and Yadav, J.S. (1994) Lipase Catalysed Kinetic Resolution of Racemic (±) 2,2-dimethyl-3-(2-methyl-1-propenyl)-cyclopropane Carboxyl Esters. Tetrahedron Letters, 35, 2611-2614.
[15] Yadav, J.S., Bhaskar, R.A., Ravindra, R.Y. and Venkata, R.R.K. (1997) Enzymatic Resolution of (±)-Cis-3-(2,2-dic- hloro-3,3,3-trifluoropropyl)-2,2-dimethylcyclopropane Carboxylate. Tetrahedron: Asymmetry, 8, 2291-2294.
[16] Tomasz, S., Marta, Z.B and Michal, P.M. (2013) Lipase-Immobilized Magnetic Chitosan Nanoparticles for Kinetic Resolution of (R,S)-Ibuprofen. Journal of Molecular Catalysis B: Enzymatic, 94, 7-14.
[17] Xun, E.-N., Lv, X.-L., Kang, W., Wang, J.-X., Zhang, H., Wang, L. and Wang, Z. (2012) Immobilization of Pseudomonas fluorescens Lipase onto Magnetic Nanoparticles for Resolution of 2-Octanol. Applied Biochemistry and Biotechnology, 168, 697-707.
[18] Bayramoglu, G. and Arica, M.Y. (2008) Preparation of Poly(glycidylmethacrylate-methylmethacrylate) Magnetic Beads: Application in Lipase Immobilization. Journal of Molecular Catalalysis B: Enzymatic, 55, 76-83.
[19] Zhang, D.H., Yuwen, L.X., Xie, Y.L., Wei, L. and Li, X.B. (2012) Improving Immobilization of Lipase onto Magnetic Microspheres with Moderate Hydrophobicity/Hydrophilicity. Colloids and Surfaces B: Biointerfaces, 89, 73-78.
[20] Laila, H.A., Rafat, M.E., Lobna, A.E.N., Ahmed, M.A., Mohamed, I. and Amin, A.S. (2014) Metal Based Pharmacologically Active Agents: Synthesis, Structural Characterization, Molecular Modeling, CT-DNA Binding Studies and in Vitro Antimicrobial Screening of Iron(II) Bromosalicylidene Amino Acid Chelates. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 117, 366-378.
[21] Carl, R.J. (1998) Biotransformations in the Synthesis of Enantiopure Bioactive Molecules. Accounts of Chemical Research, 31, 333-341.
[22] Barry, M.T. (1978) a-Sulfenylated Carbonyl Compounds in Organic Synthesis. Chemical Reviews, 78, 363-382.
[23] Alban, C., Rahul, A.W., Srijit, B., Andreas, O., Per, J.R.S. and Joseph, S.M.S. (2014) One-Pot Synthesis of Keto Thioethers by Palladium/Gold-Catalyzed Click and Pinacol Reactions. Organic Letters, 16, 5556–5559.
[24] Scott, E.D., Sergio, R., Matthew, P.W. and Hao, W. (2014) Catalytic, Enantioselective Sulfenylation of Ketone-Derived Enoxysilanes. Journal of the American Chemical Society, 136, 13016-13028.                                                eww150213lx


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / 更改 )

Twitter picture

You are commenting using your Twitter account. Log Out / 更改 )

Facebook photo

You are commenting using your Facebook account. Log Out / 更改 )

Google+ photo

You are commenting using your Google+ account. Log Out / 更改 )

Connecting to %s