Estimation of Tree Biomass, Carbon Stocks, and Error Propagation in Mecrusse Woodlands

Read  full  paper  at:


We performed a biomass inventory using two-phase sampling to estimate biomass and carbon stocks for mecrusse woodlands and to quantify errors in the estimates. The first sampling phase involved measurement of auxiliary variables of living Androstachys johnsonii trees; in the second phase, we performed destructive biomass measurements on a randomly selected subset of trees from the first phase. The second-phase data were used to fit regression models to estimate below and aboveground biomass. These models were then applied to the first-phase data to estimate biomass stock. The estimated forest biomass and carbon stocks were 167.05 and 82.73 Mg·ha-1, respectively. The percent error resulting from plot selection and allometric equations for whole tree biomass stock was 4.55% and 1.53%, respectively, yielding a total error of 4.80%. Among individual variables in the first sampling phase, diameter at breast height (DBH) measurement was the largest source of error, and tree-height estimates contributed substantially to the error. Almost none of the error was attributable to plot variability. For the second sampling phase, DBH measurements were the largest source of error, followed by height measurements and stem-wood density estimates. Of the total error (as total variance) of the sampling process, 90% was attributed to plot selection and 10% to the allometric biomass model. The total error of our measurements was very low, which indicated that the two-phase sampling approach and sample size were effective for capturing and predicting biomass of this forest type.

Cite this paper

Magalhães, T. and Seifert, T. (2015) Estimation of Tree Biomass, Carbon Stocks, and Error Propagation in Mecrusse Woodlands. Open Journal of Forestry, 5, 471-488. doi: 10.4236/ojf.2015.54041.


[1] Berger, A., Gschwantner, T., McRoberts, R., & Schadauer, K. (2014). Effects of Measurement Errors on Individual Tree Stem Volume Estimates for the Austrian National Forest Inventory. Forest Science, 60, 14-24.
[2] Brasil, M. A. M., Veiga, R. A. A., & Timoni, J. L. (1994). Erros na determinacao da densidade básica da madeira. CERNE, 1, 55-57.
[3] Brown, I. F., Martinelli, L. A., Thomas, W. W., Moreira, M. Z., Ferreira, C. A. C., & Victoria, R. A. (1995). Uncertainty in the Biomass of Amazonian Forests: An Example from Rondonia, Brazil. Forest Ecology and Management, 75, 175-189.
[4] Brown, S. (1997). Estimating Biomass and Biomass Change of Tropical Forests: A Primer. FAO Forest Paper 134.
[5] Brunig, E. F. (1983). Structure and Growth. In F. B. Golley (Ed.), Ecosystems of the World 14A, Tropical Rain Forest Ecosystems: Structure and Function (pp. 49-75). New York: Elsevier.
[6] Bunster, J. (2006) Commercial Timbers of Mozambique, Technological Catalogue. Maputo: Traforest Lda.
[7] Cannell, M. G. R (1984). Woody Biomass of Forest Stands. Forest Ecology and Management, 8, 299-312.
[8] Cardoso, G. A. (1963). Madeiras de Mocambique: Androstachys johnsonii. Maputo: Servicos de agricultura e servicos de veterinária.
[9] Carvalho, J. P., & Parresol, B. R. (2003). Additivity of Tree Biomass Components for Pyrenean oak (Quercus pyrenaica Willd.). Forest Ecology and Management, 179, 269-276.
[10] Chave, J., Condic, R., Aguilar, S., Hernandez, A., Lao, S., & Perez, R. (2004). Error Propagation and Scaling for Tropical Forest Biomass Estimates. Philosophical Transactions of the Royal Society B, 309, 409-420.
[11] Cunia, T. (1965). Some Theory on the Reliability of Volume Estimates in a Forest Inventory Sample. Forest Science, 11, 115-128.
[12] Cunia, T. (1986a). Error of Forest Inventory Estimates: Its Main Components. In E. H. Wharton, & T. Cunia, (Eds.), Estimating Tree Biomass Regressions and Their Error. NE-GTR-117. (pp. 1-13). Broomall: USDA, Forest Service, Northeastern Forest Experimental Station.
[13] Cunia, T. (1986b). On the Error of Forest Inventory Estimates: Double Sampling with Regression. In E. H. Wharton, & T. Cunia (Eds.), Estimating Tree Biomass Regressions and Their Error. NE-GTR-117 (pp. 79-87). Broomall: USDA, Forest Service, Northeaster Forest Experimental Station.
[14] Cunia, T. (1990). Forest Inventory: On the Structure of Error of Estimates. In V. J. LaBau, & T. Cunia (Eds.), State-of-the-Art Methodology of Forest Inventory: A Symposium Proceedings (pp. 169-176). General Technical Report PNW-GTR-263. Portland: USDA, Forest Service, Pacific Northwest Research Station.
[15] de Gier, I. A. (1992). Forest Mensuration (Fundamentals). Enschede, Overijssel: International Institute for Aerospace Survey and Earth Sciences (ITC).
[16] Dias, A. T. C., Mattos, E. A., Vieira, S. A., Azevedo, J. V., & Scarano, F. R. (2006). Aboveground Biomass Stock of Native Woodland on a Brazilian sand Coastal Plain: Estimates Based on the Dominant Tree Species. Forest Ecology and Management, 226, 364-367.
[17] Dinageca (1997). Mapa digital de uso e cobertura de terra. Maputo: CENACARTA.
[18] DNFFB (2002). Regulamento da lei de florestas e fauna bravia. Maputo: Ministério de Agricultura e Desenvolvimento Rural (MADER).
[19] ESRI (2009). ArcGis Desktop: Release 9.3. Redlands, CA: Environmental Systems Research Institute.
[20] FAO (2003). FAO Map of World Soil Resources. Rome: FAO.
[21] Freese, F. (1962). Elementary Forest Sampling. Washington DC: US Department of Agriculture.
[22] Freese, F. (1984). Statistics for Land Managers. Edinburgh: Paeony Press.
[23] Gadow, K. V., & Hui, G. Y. (1999). Modelling Forest Development. Dordrecht: Kluwer Academic Publishers.
[24] Gertner, G., & Kohl, M. (1992). An Assessment of Some Nonsampling Errors in a National Survey Using an Error Budget. Forest Science, 38, 525-538.
[25] Goicoa, T., Militino, A. F., & Ugarte, M. D. (2011). Modelling Aboveground Tree Biomass While Achieving the Additivity Property. Environmental and Ecological Statistics, 18, 367-384.
[26] Husch, B., Beers, T. W., & Kershaw Jr., J. A. (2003). Forest Mensuration (4th ed.). New York: John Wiley & Sons.
[27] IPCC (2003). Good Practice Guidance for Land Use, Land-Use Change and Forestry. Hayama: Intergovernmental Panel on Climate Change.
[28] Leadley, P., Pereira, H. M., Alkemade, R., Fernandez-Manjarrés, J. F., Proenca, V., Scharlemann, J. P. W., & Walpole, M. J. (2010). Biodiversity Scenarios: Projections of 21st Century Change in Biodiversity and Associated Ecosystem Services. Technical Series No. 50, Montreal: Secretariat of the Convention on Biological Diversity.
[29] Loetsch, F., Zohrer, F., & Haller, K. E. (1973). Forest Inventory, Volume II. München: BLV Verlagsgesellschaft.
[30] Machado, S. A., & Figueiredo Filho, A. (2006). Dendrometria. Paraná: Editora unicentro.
[31] Mae (2005a). Perfil do distrito de Chibuto, província de Gaza. Maputo: Mae.
[32] Mae (2005b). Perfil do distrito de Funhalouro, província de Inhambane. Maputo: Mae.
[33] Mae (2005c). Perfil do distrito de Mabote, província de Inhambane. Maputo: Mae.
[34] Mae (2005d). Perfil do distrito de Mandhlakaze, província de Gaza. Maputo: Mae.
[35] Mae (2005e). Perfil do distrito de Panda, província de Inhambane. Maputo: Mae.
[36] Malimbwi, R. E., Solberg, B., & Luoga, E. (1994). Estimation of Biomass and Volume in Miombo Woodland at Kitulangalo Forest Reserve, Tanzania. Journal of Tropical Forest Science, 7, 230-242.
[37] Mantilla, J., & Timane, R. (2005). Orientacao para maneio de mecrusse. Maputo: SymfoDesign.
[38] Meyer, H. A. (1941). A Correction for a Systematic Errors Occurring in the Application of the Logarithmic Volume Equation. Harrisburg, PA: Forestry School Research.
[39] Molto, Q., Rossi, V., & Blanc, L. (2012). Error Propagation in Biomass Estimation in Tropical Forests. Methods in Ecology and Evolution, 4, 175-183.
[40] Munishi, P. K. T., Mringi, S., Shirima, D. D., & Linda, S. K. (2010). The Role of the Miombo Woodlands of the Southern Highlands of Tanzania as Carbon Sinks. Journal of Ecology and the Natural Environment, 2, 261-269.
[41] Paladinic, E., Vuletic, D., Martinic, I., Marjanovic, H., Indir, K., Benko, M., & Novotny, V. (2009). Forest Biomass and Sequestrated Carbon Estimation According to Main Tree Components on the Forest Stand Scale. Periodicum Biologorum, 111, 459-466.
[42] Pardé, J. D. (1980). Forest Biomass. Forest Abstracts, 41, 343-362.
[43] Parresol B. R. (1999). Assessing Tree and Stand Biomass: A Review with Examples and Critical Comparisons. Forest Science, 45, 573-593.
[44] Parresol, B. R. (2001). Additivity of Nonlinear Biomass Equations. Canadian Journal of Forest Research, 31, 865-878.
[45] R Core Team (2013). A Language and Environment for Statistical Computing. Vienna: R Foundation for Statistical Computing.
[46] Rai, S. N. (1981). Productivity of Tropical Rainforests of Karnataka. Ph.D. Thesis, Bombay: University of Bombay.
[47] Rai, S. N., & Proctor, J. (1986). Ecological Studies on Four Rainforests in Karnataka, India: I. Environment, Structure, Floristics and Biomass. Journal of Ecology, 74, 439-454.
[48] Ribeiro, N. S., Matos, C. N., Moura, I. R., Washington-Allen, R. A., & Ribeiro, A. I. (2013). Monitoring Vegetation Dynamics and Carbon Stock Density in Miombo Woodlands. Carbon Balance and Management, 8, 11.
[49] Ribeiro, N., Sitoe, A. A., Guedes, B. S., & Staiss, C. (2002). Manual de silvicultura tropical. Maputo: Food and Agriculture Organisation of the United Nations.
[50] Ruiz-Peinado, R., del Rio, M., & Montero, G. (2011). New Models for Estimating the Carbon Sink Capacity of Spanish Softwood Species. Forest Systems, 20, 176-188.
[51] Ryan, C. M., Williams, M., & Grace, J. (2010). Above- and Belowground Carbon Stocks in a Miombo Woodland Landscape of Mozambique. Biotropica, 43, 423-432.
[52] Saatchi, S. S., Harris, N. L., Brown, S., Lefsky, M., Mitchard, E. T. A., Salas, W., Zutta, B. R., Buermann, W., Lewis, S. L., Hagen, S., Petrova, S., White, L., Silman, M., & Morel, A. (2011). Benchmark Map of Forest Carbon Stocks in Tropical Regions across Three Continents. Proceedings of the National Academy of Sciences of the United States of America, 108, 9899-9904.
[53] Salis, S. M., Assis, M. A., Mattos, P. P., & Piao, A. C. S. (2006). Estimating the Aboveground Biomass and Wood Volume of Savannah Woodlands in Brazil’s Pantanal Wetlands Based on Allometric Correlations. Forest Ecology and Management, 228, 61-68.
[54] Samalca, K. I. (2007). Estimation of Forest Biomass and Its Error: A Case in Kalimantan, Indonesia. M.Sc. Thesis, Enschede, Overijssel: International Institute for Geo-Information Science and Earth Observation (ITC).
[55] Sanquetta, C. R., Watzlawick, L. F., Corte, A. P. D., & Fernandes, L. A. V. (2006). Inventários florestais: Planejamento e execucao. Curitiba: Multi-graphic gráfica e editora.
[56] Schmid-Haas, P., & Winzeler, K. (1981). Efficient Determination of Volume and Volume Growth. In N. Masahisa (Ed.), Proceedings of Forest Resource Inventory, Growth Models, Management Planning, and Remote Sensing (pp. 231-257). 17th IUFRO World Congress, 6-12 September 1981, Kyoto, Ikarashi, Niigata: Niigata University, Faculty of Agriculture, Laboratory of Forest Mensuration.
[57] Seifert, T., & Seifert, S. (2014). Modelling and Simulation of Tree Biomass. In T. Seifert (Ed.), Bioenergy from Wood: Sustainable Production in the Tropics. Managing Forest Ecosystems (Vol. 26, pp. 43-65). Berlin: Springer.
[58] Sitoe, A. A., & Ribeiro, N. S. (1995). Miombo Book Project (Case Study of Mozambique). Maputo: Universidade Eduardo Mondlane (UEM).
[59] Slik, J. W. F., Aiba, S. I., Brearley, F. Q., Cannon, C. H., Forshed, O., Kitayama, K., Nagamasu, H., Nilus, R., Payne, J., Paoli, G., Poulsen, A. D., Raes, N., Sheil, D., Sidiyasa, K., Suzuki, E., & Valkenburg, J. L. C. H. (2010). Environmental Correlates of Tree Biomass, Basal Area, Wood Specific Gravity and Stem Density Gradients in Borneo’s Tropical Forests. Global Ecology and Biogeography, 19, 50-60.
[60] Spiess, A. N. (2013). Propagate: Propagation of Uncertainty (R Package Version 1.0-1). Vienna: R Foundation for Statistical Computing.
[61] Stauffer, H. B. (1983). Some Sample Size Tables for Forest Sampling. British Columbia: Ministry of Forests.
[62] Stellingwerf, D. A. (1994). Forest Inventory and Remote Sensing. Enschede, Overijssel: International Training Centre for Aerial Survey (ITC).
[63] Wang, C. K. (2006). Biomass Allometric Equations for 10 Co-Occurring Tree Species in Chinese Temperate Forests. Forest Ecology and Management, 222, 9-16.
[64] Wang, J., Zhang, C., Xia, F., Zhao, X., Wu, L., & von Gadow, K. (2011). Biomass Structure and Allometry of Abies nephrolepis (Maxim) in Northeast China. Silva Fennica, 45, 211-226.


Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / 更改 )

Twitter picture

You are commenting using your Twitter account. Log Out / 更改 )

Facebook photo

You are commenting using your Facebook account. Log Out / 更改 )

Google+ photo

You are commenting using your Google+ account. Log Out / 更改 )

Connecting to %s