Pyroelectric Bi5-x(Bi2S3)39I12S: Fibonacci Superstructure, Synthesis Options and Solar Cell Potential

Read  full  paper  at:http://www.scirp.org/journal/PaperInformation.aspx?PaperID=55984#.VT8mqdKqpBc

Author(s)

ABSTRACT

Previously, synthetic hexagonal bismuth sulfide iodide (polar space group P63, a = 15.629(3) Å, c = 4.018(1)Å, Z = 2) has been described by the rather unsatisfactory fractional formula Bi19/3IS9 [1]-[3]. A redetermination of the structure using old but reliable photographic intensity data indicated the presence of additional split positions and reduced atomic occupancies. From the observed pattern of this “averaged” structure a consistent model of a superstructure with lattice parameters of a’ = √13·a = 56.35(1) Å, c’ = c, and a formula Bi5-x(Bi2S3)39I12S emerged, with 2 formula units in a cell of likewise P63 space group. Structural modulation may be provoked by the space the lone electron pair of Bi requires. When Bi on the 0, 0, z position of the “averaged” cell is transferred to two general six-fold sites and one unoccupied twofold one of the super-cell, more structural stability is guaranteed due to compensation of its basal plane dipole momentum. Owing to the limited intensity data available, more details of the superstructure are not accessible yet. Some physical properties and solar cell application are discussed together with suggestions of ambient temperature synthesis routes of c-axis oriented nano-rod sheets.

Cite this paper

Otto, H. (2015) Pyroelectric Bi5-x(Bi2S3)39I12S: Fibonacci Superstructure, Synthesis Options and Solar Cell Potential. World Journal of Condensed Matter Physics, 5, 66-77. doi: 10.4236/wjcmp.2015.52010.

References

[1] Otto, H.H. (1965) Zur Kristallchemie Synthetischer Blei-Wismut-Spießglanze. Diploma Thesis TU Berlin.
[2] Otto, H.H. and Strunz, H. (1968) Zur Kristallchemie Synthetischer Blei-Wismut-Spießglanze. Neues Jahrbuch Fur Mineralogie Abhandlungen, 108, 1-19.
[3] Miehe, G. and Kupcik, V. (1971) Die Kristallstruktur des Bi(Bi2S3)9I3. Naturwissenschaften, 58, 219.
http://dx.doi.org/10.1007/BF00591851
[4] Kramer, V. (1973) Crystal Data on Bismuth Sulphide Bromide. Journal of Applied Crystallography, 6, 499.
http://dx.doi.org/10.1107/S0021889873009349
[5] Kramer, V. (1974) Synthesis and Crystal Data of the Bismuth Sulphide Chloride Bi19S27Cl3. Zeitschrift fur Naturforschung, 29b, 688-689.
[6] Mariolakos, K. (1976) The Crystal Structure of Bi(Bi2S3)9Br3. Acta Crystallographica, B22, 1947-1949.
http://dx.doi.org/10.1107/S0567740876006833
[7] Lippmann, F. (1961) Benstonit, Ca7Ba6(CO3)13, Ein Neues Mineral. Naturwissenschaften, 48, 550-551.
http://dx.doi.org/10.1007/BF00639159
[8] Rouse, R.C. and Peacor, D.R. (1968) The Relationship between Senaite, Magnetoplumbite, and Davidite. Americal Mineralogist, 53, 869-879.
[9] Lippmann, F. (1962) Zur Deutung der Uberstruktur des Klockmannits, CuSe. Neues Jahrbuchfur Mineralogie Monatshefte, 99-105.
[10] Taylor, C.A. and Underwood, F.A. (1960) A Twinning Interpretation of “Superlattice” Reflections in X-Ray Photographs of Synthetic Klockmannite. Acta Crystallographica, 13, 361-362.
http://dx.doi.org/10.1107/S0365110X60000868
[11] Contag, B. (1962) Zur Kristallchemie von Davidit. Doctoral Thesis, TU, Berlin.
[12] Deng, C., Guan, H. and Tian, X. (2013) Novel Bi19S27Br3 Superstructures: Facile Microwave-Assisted Aqueous Synthesis and Their Visible Light Photocatalytic Performance. Materials Letters, 108, 17-20.
http://dx.doi.org/10.1016/j.matlet.2013.06.078
[13] Oppermann, H. and Petasch, U. (2003) Zu den pseudobinaren Zustandssystemen Bi2Ch2-BiX3 und den ternaren Phasen auf diesen Schnitten (Ch = S, Se, Te; X = Cl, Br, I), I: Bismutsulfidhalogenide. Zeitschriftfur Naturforschung, 58b, 725-740.
[14] Aliev, Z.S., Musayeva, S.S., Jafarli, F.Y., Amiraslanov, I.R., Shevelkov, A.V. and Babanly, M.B. (2014) The Phase Equilibria in the Bi-S-I Ternary System and Thermodynamic Properties of the BiSI and Bi19S27I3 Ternary Compounds. Journal of Alloys and Compounds, 610, 522-528.
http://dx.doi.org/10.1016/j.jallcom.2014.05.015
[15] Otto, H.H. and Brandt, H.J. (1996) Crystal Structure of Pb6[Ge6O18]·2H2O, a Lead Cyclo-Germanate Similar to the Mineral Dioptase. European Journal of Mineralogy, 8, 301-310.
http://dx.doi.org/10.1127/ejm/8/2/0301
[16] Otto, H.H. (1975) Die Kristallstruktur des Fleischerits, Pb3Ge[(OH)6|(SO4)2]·3H2O, sowie kristall-chemische Untersuchungen an isotypen Verbindungen. Neues Jahrbuch fur Mineralogie Abhandlungen, 123, 160-190.
[17] Weber, K. (1967) Neue Absorptionsfaktortafeln fur den Kreiszylinder. Acta Crystallographica, 23, 720-725.
http://dx.doi.org/10.1107/S0365110X67003585
[18] Zachariasen, W.H. (1967) A General Theory of X-Ray Diffraction in Crystals. Acta Crystallographica, 23, 558-564.
http://dx.doi.org/10.1107/S0365110X67003202
[19] Sheldrick, G. (1993) PCSHELXL Manual. Universitat Gottingen, Gottingen.
[20] Brown, I.D. and Shannon, R.D. (1973) Empirical Bond-Strength-Bond-Length Curves for Oxides. Acta Crystallographica, A29, 266-282.
http://dx.doi.org/10.1107/S0567739473000689
[21] Otto, H.H. (1984) Neue Erkenntnisse uber die Verbindungen des Systems PbS-Bi2S3(und verwandte Verbindungen). Zeitschrift der Forderer des Bergbaus und des Huttenwesens an der TU Berlin, 18, 1-6.
[22] Otto, H.H. (2015) Crystal and Domain Structure of Acentric Pb3Bi2(GeO4)3Apatite. Journal of Applied Crystallography, Submitted.
[23] Gratzel, M. (2001) Photochemical Cells. Nature, 414, 338-344.
http://dx.doi.org/10.1038/35104607
[24] Nitsche, R., Roetschi, H. and Wild, P. (1964) New Ferroelectric V-VI-VII Compounds of the SbSI Type. Applied Physics Letters, 4, 210-211.
http://dx.doi.org/10.1063/1.1753944
[25] Sasaki, Y. (1965) Photoconductivity of a Ferroelectric Photoconductor BiSI. Japanese Journal of Applied Physics, 4, 614-615.
http://dx.doi.org/10.1143/JJAP.4.614
[26] Audzijonis, A., Zaltauskas, R., Sereika, R., Zigas, L. and Reza, A. (2010) Electronic Structure and Optical Properties of BiSI Crystals. Journal of Physics and Chemistry of Solids, 71, 884-891.
http://dx.doi.org/10.1016/j.jpcs.2010.03.042
[27] Medles, M., Benramdane, N., Bouzidi, A., Nakrela, A., Tabet-Derraz, H., Kebbab, Z., Mathieu, C., Khelifa, B. and Desfeux, R. (2006) Optical and Electrical Properties of Bi2S3 Films Deposited by Spray Pyrolysis. Thin Solid Films, 497, 58-64.
http://dx.doi.org/10.1016/j.tsf.2005.09.186
[28] Weber, D. (1978) CH3NH2PbX3, ein Pb(II)-System mit kubischer Perowskitstruktur. Zeitschrift fur Naturforschung, 33b, 1443-1445.
[29] Jeon, N.J., Noh, J.H., Yang, W.S., Kim, Y.C., Ryu, S., Seo, J.S. and Seok, S.H. (2015) Compositional Engineering of Perovskite Materials for High-Performance Solar Cells. Nature, 517, 476-480.
http://dx.doi.org/10.1038/nature14133
[30] Hattori, T., Taira, T., Era, M., Tsutsui, T. and Saito, S. (1996) Highly Efficient Electroluminescence from a Heterostructure Device Combined with Emissive Layered-Perovskite and an Electron-Transporting Organic Compound. Chemical Physics Letters, 254, 103-108.
http://dx.doi.org/10.1016/0009-2614(96)00310-7
[31] Chondroudis, K. and Mitzi, D.B. (1999) Electroluminescence from an Organic-Inorganic Perovskite Incorporating a Quaterthiophene Dye within Lead Halide Perovskite Layers. Chemistry of Materials, 11, 3028-3030.
http://dx.doi.org/10.1021/cm990561t
[32] Tan, Z.-K., Moghaddam, R.S., Lai, M.L., Docampo, D., Higler, R., Deschler, F., Price, M., Sadhanala, A., Pazos, L.M., Credgington, D., Hanusch, F., Bein, T., Snaith, H.J. and Friend, R.H. (2014) Bright Light-Emitting Diodes Based on Organometal Halide Perovskite. Nature Nanotechnology, 9, 687-692.
http://dx.doi.org/10.1038/nnano.2014.149
[33] Moss, T.S. (1985) Relation between Refractive Index and Energy Gap of Semiconductors. Physica Status Solidi (b), 131, 415-427.
http://dx.doi.org/10.1002/pssb.2221310202
[34] Agiorgousis, M.L., Su, Y.Y., Zeng, H. and Zhang, S. (2014) Strong Covalency-Induced Recombination Centers in Perovskite Solar Cell Material CH3NH3PbI3. Journal of the American Chemical Society, 136, 14570-14575.
http://dx.doi.org/10.1021/ja5079305
[35] Nowak, M., Talik, E., Szperlich, P. and Stroz, D. (2009) XPS Analysis of Sonochemical Prepared SbSI Ethanogel. Applied Surface Sciences, 255, 7689-7694.
http://dx.doi.org/10.1016/j.apsusc.2009.04.138
[36] Zhu, J., Pandey, R. and Gu, M. (2012) The Phase Transition and Elastic and Optical Properties of Polymorphs of CuI. Journal of Physics: Condensed Matter, 24, Article ID: 475503.
[37] Haroldson, R., Olds, Z., Cook, A.B. and Zakhidov, A. (2015) Hybrid Perovskite Solar Cells with Copper Iodide as Hole Transportlayer. Bulletin of the American Physical Society, 60.
[38] Christians, J.A., Fung, R.C.M. and Kamat, P.V. (2014) An Inorganic Hole Conductor for Organo-Lead Halide Perovskite Solar Cells. Improved Hole Conductivity with Copper Iodide. Journal of the American Chemical Society, 136, 758-764.
http://dx.doi.org/10.1021/ja411014k
[39] Kossoy, A., Merk, V., Simakov, D., Leoson, K., Kena-Cohen, S. and Maier, S.A. (2015) Optical and Structural Properties of Ultra-Thin Gold Films. Advanced Optical Materials, 3, 71-77.
http://dx.doi.org/10.1002/adom.201400345
[40] Zainun, A.R., Noor, U.M. and Rusa, M. (2011) Electric and Optical Properties of Nanostructured Copper(I) Iodine (CuI) Incorporated with Ligand Agent for Dye Sensitized Solar Cell Application (DSSC). International Journal of the Physical Sciences, 6, 3993-3998.
[41] Bailie, C.D., Christoforo, M.G., Mailoa, J.P., Bowring, A.R., Unger, E.L., Nguyen, W.H., Burschka, J., Pellet, N., Lee, J.Z., Gratzel, M., Noufi, R., Buonassisi, T., Salleo, A. and McGehee, M.D. (2015) Semi-Transparent Perovskite Solar Cells for Tandems with Silicon and CIGS. Energy & Environmental Sciences, 8, 956-963.
http://dx.doi.org/10.1039/C4EE03322A
Advertisements

发表评论

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / 更改 )

Twitter picture

You are commenting using your Twitter account. Log Out / 更改 )

Facebook photo

You are commenting using your Facebook account. Log Out / 更改 )

Google+ photo

You are commenting using your Google+ account. Log Out / 更改 )

Connecting to %s