Generalization of the Global Error Minimization for Constructing Analytical Solutions to Nonlinear Evolution Equations

The global error minimization is a variational method for obtaining approximate analytical solutions to nonlinear oscillator equations which works as follows. Given an ordinary differential equation, a trial solution containing unknowns is selected. The method then converts the problem to an equivalent minimization problem by averaging the squared residual of the differential equation for the selected trial solution. Clearly, the method fails if the integral which defines the average is undefined or infinite for the selected trial. This is precisely the case for such non-periodic solutions as heteroclinic (front or kink) and some homoclinic (dark-solitons) solutions. Based on the fact that these types of solutions have vanishing velocity at infinity, we propose to remedy to this shortcoming of the method by averaging the product of the residual and the derivative of the trial solution. In this way, the method can apply for the approximation of all relevant type of solutions of nonlinear evolution equations. The approach is simple, straightforward and accurate as its original formulation. Its effectiveness is demonstrated using a Helmholtz-Duffing oscillator.

来源: Generalization of the Global Error Minimization for Constructing Analytical Solutions to Nonlinear Evolution Equations

Advertisements

发表评论

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / 更改 )

Twitter picture

You are commenting using your Twitter account. Log Out / 更改 )

Facebook photo

You are commenting using your Facebook account. Log Out / 更改 )

Google+ photo

You are commenting using your Google+ account. Log Out / 更改 )

Connecting to %s