Thermodynamic Equilibrium of the Saturated Fluid with a Free Surface Area and the Internal Energy as a Function of the Phase-Specific Volumes and Vapor Pressure

This study is concerned with describing the thermodynamic equilibrium of the saturated fluid with and without a free surface area A. Discussion of the role of A as system variable of the interface phase and an estimate of the ratio of the respective free energies of systems with and without A show that the system variables given by Gibbs suffice to describe the volumetric properties of the fluid. The well-known Gibbsian expressions for the internal energies of the two-phase fluid, namely for the vapor and for the condensate (liquid or solid), only differ with respect to the phase-specific volumes and . The saturation temperature T, vapor presssure p, and chemical potential are intensive parameters, each of which has the same value everywhere within the fluid, and hence are phase-independent quantities. If one succeeds in representing as a function of and , then the internal energies can also be described by expressions that only differ from one another with respect to their dependence on and . Here it is shown that can be uniquely expressed by the volume function . Therefore, the internal energies can be represented explicitly as functions of the vapor pressure and volumes of the saturated vapor and condensate and are absolutely determined. The hitherto existing problem of applied thermodynamics, calculating the internal energy from the measurable quantities T, p, , and , is thus solved. The same method applies to the calculation of the entropy, chemical potential, and heat capacity.

来源: Thermodynamic Equilibrium of the Saturated Fluid with a Free Surface Area and the Internal Energy as a Function of the Phase-Specific Volumes and Vapor Pressure

Advertisements

发表评论

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / 更改 )

Twitter picture

You are commenting using your Twitter account. Log Out / 更改 )

Facebook photo

You are commenting using your Facebook account. Log Out / 更改 )

Google+ photo

You are commenting using your Google+ account. Log Out / 更改 )

Connecting to %s