The Effects of Centrality Ordering in Label Propagation for Community Detection

In many cases randomness in community detection algorithms has been avoided due to issues with stability. Indeed replacing random ordering with centrality rankings has improved the performance of some techniques such as Label Propagation Algorithms. This study evaluates the effects of such orderings on the Speaker-listener Label Propagation Algorithm or SLPA, a modification of LPA which has already been stabilized through alternate means. This study demonstrates that in cases where stability has been achieved without eliminating randomness, the result of removing random ordering is over fitting and bias. The results of testing seven various measures of centrality in conjunction with SLPA across five social network graphs indicate that while certain measures outperform random orderings on certain graphs, random orderings have the highest overall accuracy. This is particularly true when strict orderings are used in each run. These results indicate that the more evenly distributed solution space which results from complete random ordering is more valuable than the more targeted search that results from centrality orderings.

来源: The Effects of Centrality Ordering in Label Propagation for Community Detection



Fill in your details below or click an icon to log in: Logo

You are commenting using your account. Log Out / 更改 )

Twitter picture

You are commenting using your Twitter account. Log Out / 更改 )

Facebook photo

You are commenting using your Facebook account. Log Out / 更改 )

Google+ photo

You are commenting using your Google+ account. Log Out / 更改 )

Connecting to %s