Plant Breeding for Harmony between Modern Agriculture Production and the Environment

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53313#.VLyl48nQrzE

ABSTRACT

The world population is estimated to be 9.2 billion in 2050. To sufficiently feed these people, the total food production will have to increase 60% – 70%. Climate models predict that warmer tem-peratures and increases in the frequency and duration of drought during the present century will have negative impact on agricultural productivity. These new global challenges require a more complex integrated agricultural and breeding agenda that focuses on livelihood improvement coupled with agro-ecosystem resilience, eco-efficiency and sustainability rather than just on crop productivity gains. Intensifying sustainability agro-ecosystems by producing more food with lower inputs, adapting agriculture to climate change, conserving agro-biodiversity through its use, and making markets to work for the small farmers are needed to address the main issues of our time. Plant breeding has played a vital role in the successful development of modern agriculture. Development of new cultivars will be required while reducing the impact of agriculture on the environment and maintaining sufficient production. Conventional plant breeding will remain the backbone of crop improvement strategies. Genetic engineering has the potential to address some of the most challenging biotic constraints faced by farmers, which are not easily addressed through conventional plant breeding alone. Protective measures and laws, especially patenting, must be moderated to eliminate coverage so broad that it stifles innovation. They must be made less restrictive to encourage research and free flow of materials and information. Small farmers have an important role in conserving and using crop biodiversity. Public sector breeding must remain vigorous, especially in areas where the private sector does not function. This will often require benevolent public/private partnerships as well as government support. Active and positive connections between the private and public breeding sectors and large-scale gene banks are required to avoid a possible conflict involving breeders’ rights, gene preservation and erosion. Plant breeding can be a powerful tool to bring “harmony” between agriculture and the environment, but partnerships and cooperation are needed to make this a reality.

Cite this paper

Dias, J. (2015) Plant Breeding for Harmony between Modern Agriculture Production and the Environment. Agricultural Sciences, 6, 87-116. doi: 10.4236/as.2015.61008.

References

[1] Jaggard, K.W., Qi, A.M. and Ober, E.S. (2010) Possible Changes to Arable Crop Yields by 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2835-2851. http://dx.doi.org/10.1098/rstb.2010.0153
[2] FAO (2012) The State of the World Population Report. By Choice, Not by Chance: Family Planning, Human Rights and Development. United Nations Population Fund, New York.
[3] da Silva Dias, J.C. (2014) Guiding Strategies for Breeding Vegetable Cultivars. Agricultural Sciences, 5, 9-32. http://dx.doi.org/10.4236/as.2014.51002
[4] Dias, J.S. and Ryder, E.J. (2011) World Vegetable Industry: Production, Breeding, Trends. Horticultural Reviews, 38, 299-356.
[5] Dias, J.S. (2012) Chapter 1. Vegetable Breeding for Nutritional Quality and Health Benefits. In: Carbone, K., Ed., Cultivars: Chemical Properties, Antioxidant Activities and Health Benefits, Nova Science Publishers, Inc., Hauppauge, 1-81.
[6] Tilman, D., Balzer, C., Hill, J. and Befort, B.L. (2011) Global Food Demand and the Sustainable Intensification of Agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260-20264. http://dx.doi.org/10.1073/pnas.1116437108
[7] Alexandratos, N. and Bruinsma, J. (2012) World Agriculture towards 2030/2050: The 2012 Revision. Paper No. 12-03, Food and Agriculture Organization (FAO), Rome.
[8] FAO (2012) How to Feed the World in 2050. FAO, Rome.
[9] Delgado, C.L. (2003) Rising Consumption of Meat and Milk in Developing Countries Has Created a New Food Revolution. Journal of Nutrition, 133, 3907S-3910S.
[10] Kastner, T., Rivas, M.J.I., Koch, W. and Nonhebel, S. (2012) Global Changes in Diets and the Consequences for Land Requirements for Food. Proceedings of the National Academy of Sciences of the United States of America, 109, 6868-6872. http://dx.doi.org/10.1073/pnas.1117054109
[11] Delgado, C.L. (1999) Livestock to 2020: The Next Food Revolution. Food, Agriculture, and the Environment Discussion Paper No. 28, International Food Policy Research Institute, Washington DC.
[12] The Royal Society (2009) Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. The Royal Society Policy Document 11/09, The Royal Society, London.
[13] Naylor, R., Steinfeld, H., Falcon, W., Galloway, J., Smil, V., Bradford, E., Alder, J. and Mooney, H. (2005) Losing the Links between Livestock and Land. Science, 310, 1621-1622.
[14] Gerbens-Leenes, P. and Nonhebel, S. (2002) Consumption Patterns and Their Effects on Land Required for Food. Ecological Economics, 42, 185-199.
http://dx.doi.org/10.1016/S0921-8009(02)00049-6
[15] Wirsenius, S., Azar, C. and Berndes, G. (2010) How Much Land Is Needed for Global Food Production under Scenarios of Dietary Changes and Livestock Productivity Increases in 2030? Agricultural Systems, 103, 621-638. http://dx.doi.org/10.1016/j.agsy.2010.07.005
[16] Pimentel, D. and Pimentel, M. (2003) Sustainability of Meat-Based and Plant-Based Diets and the Environment. American Journal of Clinical Nutrition, 78, 660S-663S.
[17] Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstr?m, J., Sheehan, J., Siebert, S., Tilman, D. and Zaks, D.P. (2011) Solutions for a Cultivated Planet. Nature, 478, 337-342. http://dx.doi.org/10.1038/nature10452
[18] Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. and De Haan, C. (2006) Livestock’s Long Shadow: Environmental Issues and Options. FAO, Rome.
[19] Mekonnen, M.M. and Hoekstra, A.Y. (2012) A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems, 15, 401-415. http://dx.doi.org/10.1007/s10021-011-9517-8
[20] World Watch Institute (2010) Biofuel Production Up Despite Economic Downturn Vital Signs. World Watch Institute, New York.
[21] Food and Agricultural Policy Research Institute (FAPRI) (2011) World Biofuels: FAPRI-ISU 2011 Agricultural Outlook. FAPRI, Ames.
[22] FAO (2013) FAO Statistical Yearbook—Land Use. FAOSTAT, FAO, Rome, PA4.
[23] Kucharik, C.J. and Serbin, S.P. (2008) Impact of Recent Climate Change on Wisconsin Corn and Soybean Yield Trends. Environmental Research Letters, 3, Article ID: 034003, 10 p.
[24] Battisti, D.S. and Naylor, R.L. (2009) Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science, 323, 240-244. http://dx.doi.org/10.1126/science.1164363
[25] Schlenker, W. and Lobell, D.B. (2010) Robust Negative Impacts of Climate Change on African Agriculture. Environmental Research Letters, 5, Article ID: 014010, 8 p.
[26] Roudier, P., Sultan, B., Quirion, P. and Berg, A. (2011) The Impact of Future Climate Change on West African Crop Yields: What Does the Recent Literature Say? Global Environmental Change, 21, 1073-1083. http://dx.doi.org/10.1016/j.gloenvcha.2011.04.007
[27] Lobell, D.B., Schlenker, W. and Costa-Roberts, J. (2011) Climate Trends and Global Crop Production since 1980. Science, 333, 616-620. http://dx.doi.org/10.1126/science.1204531
[28] Lobell, D.B., Banziger, M., Magorokosho, C. and Vivek, B. (2011) Nonlinear Heat Effects on African Maize as Evidenced by Historical Yield Trials. Nature Climate Change, 1, 42-45. http://dx.doi.org/10.1038/nclimate1043
[29] Schlenker, W. and Roberts, M.J. (2009) Nonlinear Temperature Effects Indicate Severe Damages to US Crop Yields under Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 106, 15594-15598. http://dx.doi.org/10.1073/pnas.0906865106
[30] Gupta, R., Gopal, R., Jat, M.L., Jat, R.K., Sidhu, H.S., Minhas, P.S. and Malik, R.K. (2010) Wheat Productivity in Indo-Gangetic Plains of India during 2010: Terminal Heat Effects and Mitigation Strategies. PACA Newsletter, 14, 1-11.
[31] Asseng, S., Foster, I. and Turner, N.C. (2011) The Impact of Temperature Variability on Wheat Yields. Global Change Biology, 17, 997-1012. http://dx.doi.org/10.1111/j.1365-2486.2010.02262.x
[32] Lobell, D.B., Sibley, A. and Ortiz-Monasterio, J.I. (2012) Extreme Heat Effects on Wheat Senescence in India. Nature Climate Change, 2, 186-189. http://dx.doi.org/10.1038/nclimate1356
[33] Bell, G. and Collins, S. (2008) Adaptation, Extinction and Global Change. Evolutionary Applications, 1, 3-16.
[34] Kelly, A.E. and Goulden, M.L. (2008) Rapid Shifts in Plant Distribution with Recent Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 105, 11823-11826.
http://dx.doi.org/10.1073/pnas.0802891105
[35] Shanthi-Prabha, V., Sreekanth, N.P., Babu, P.K. and Thomas, A.P. (2011) The Trilemma of Soil Carbon Degradation, Climate Change and Food Insecurity. Disaster Risk and Vulnerability Conference 2011, The Applied Geoinformatics for Society and Environment, Germany, 107-112.
[36] Gregory, P.J., Johnson, S.N., Newton, A.C. and Ingram, J.S.I. (2009) Integrating Pests and Pathogens into the Climate Change/Food Security Debate. Journal of Experimental Botany, 60, 2827-2838. http://dx.doi.org/10.1093/jxb/erp080
[37] Patz, J.A. and Kovats, R.S. (2002) Hot Spots in Climate Change and Human Health: Present and Future Risks. Lancet, 368, 859-869.
[38] Mcmichael, A., Woodruff, R.E. and Hales, S. (2006) Climate Change and Human Health: Present and Future Risks. Lancet, 367, 859-869. http://dx.doi.org/10.1016/S0140-6736(06)68079-3
[39] Ziska, L.H., Epstein, P.R. and Schlesinger, W.H. (2009) Rising CO2, Climate Change, and Public Health: Exploring the Links to Plant Biology. Environmental Health Perspectives, 117, 155-158. http://dx.doi.org/10.1289/ehp.11501
[40] Borlaug, N. (1983) Contributions of Conventional Plant Breeding to Food Production. Science, 219, 689-693. http://dx.doi.org/10.1126/science.219.4585.689
[41] Trethowan, R.M., Reynolds, M.P., Ortiz-Monasterio, I. and Ortiz, R. (2007) The Genetic Basis of the Green Revolution in Wheat Production. Plant Breeding Reviews, 28, 39-58.
http://dx.doi.org/10.1002/9780470168028.ch2
[42] Evenson, R.E. and Gollin, D. (2003) Assessing the Impact of the Green Revolution, 1960 to 2000. Science, 300, 758-762. http://dx.doi.org/10.1126/science.1078710
[43] Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. (2002) Agricultural Sustainability and Intensive Production Practices. Nature, 418, 671-677. http://dx.doi.org/10.1038/nature01014
[44] Burney, J.A., Davis, S.J. and Lobell, D.B. (2010) Greenhouse Gas Mitigation by Agricultural Intensification. Proceedings of the National Academy of Sciences of the United States of America, 107, 12052-12057. http://dx.doi.org/10.1073/pnas.0914216107
[45] Edgerton, M.D. (2009) Increasing Crop Productivity to Meet Global Needs for Feed, Food, and Fuel. Plant Physiology, 149, 7-13. http://dx.doi.org/10.1104/pp.108.130195
[46] IAASTD (2009) Agriculture at the Crossroads. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Island Press, Washington DC.
[47] Harlan, J.R. (1992) Crops and Man. American Society of Agronomy and Crop Science Society of America, Madison.
[48] Pratt, R.C. (2004) An Historical Examination of the Development and Adoption of Hybrid Corn: A Case Study in Ohio. Maydica, 49, 155-172.
[49] Dias, J.S. (2011) Biodiversity and Vegetable Breeding in the Light of Developments in Intellectual Property Rights. In: Grillo, O. and Verona, G., Eds., Ecosystems Biodiversity, Chapter 17, INTECH publisher, Rijeka, 389-428.
[50] Dias, J.S. (2012) Impact of the Vegetable Breeding Industry and Intellectual Property Rights in Biodiversity and Food Security. In: Jones, A.M. and Hernandez, F.E., Eds., Food Security: Quality, Management, Issues and Economic Implications, Nova Science Publishers Inc., Hauppauge, 57-86.
[51] Dias, J.S. (2013) Impact of Vegetable Breeding Industry and Intellectual Property Rights in Food Security. In: Nath, P., Ed., The Basics of Human Civilization-Food, Agriculture and Humanity, Vol. I. Present Scenario, Prem Nath Agricultural Science Foundation (PNASF), Bangalore & New India Publishing Agency (NIPA), New Delhi, 173-198.
[52] Dias, J.S. and Ryder, E. (2012) Impact of Plant Breeding on the World Vegetable Industry. Acta Horticulturae, 935, 13-22.
[53] Dias, J.S. (2010) Impact of Improved Vegetable Cultivars in Overcoming Food Insecurity. In: Nath, P. and Gaddagimath, P.B., Eds., Horticulture and Livelihood Security, Scientific Publishers, New Dehli, 303-339.
[54] Dias, J.S. and Ortiz, R. (2012) Transgenic Vegetable Crops: Progress, Potentials and Prospects. Plant Breeding Reviews, 35, 151-246.
[55] Dias, J.S. (1989) The Use of Molecular Markers in Selection of Vegetables. SECH, Actas de Horticultura, 3, 175-181.
[56] Dias, J.S. (1991) The Use of Computers in Plant Breeding. SECH, Actas de Horticultura, 8, 367-371.
[57] Dias, J.S. and Ortiz, R. (2012) Transgenic Vegetable Breeding for Nutritional Quality and Health Benefits. Food and Nutrition Sciences, 3, 1209-1219. http://dx.doi.org/10.4236/fns.2012.39159
[58] Dias, J.S. and Ortiz, R. (2013) Transgenic Vegetables for Southeast Asia. In: Holmer, R., Linwattana, G., Nath, P. and Keatinge, J.D.H., Eds., Proceedings. Regional Symposium on High Value Vegetables in Southeast Asia: Production, Supply and Demand (SEAVEG 2012), Chiang Mai, 24-26 January 2012, 361-369.
[59] Dias, J.S. and Ortiz, R. (2013) Transgenic Vegetables for 21st Century Horticulture. Acta Horticulturae, 974, 15-30.
[60] Dias, J.C. (2010) Impact of Improved Vegetable Cultivars in Overcoming Food Insecurity. Euphytica, 176, 125-136. http://dx.doi.org/10.1007/s10681-010-0237-5
[61] Tilman, D. (1999) Global Environmental Impacts of Agricultural Expansion: The Need for Sustainable and Efficient Practices. Proceedings of the National Academy of Sciences of the United States of America, 96, 5995-6000. http://dx.doi.org/10.1073/pnas.96.11.5995
[62] Robertson, G.P. and Swinton, S.M. (2005) Reconciling Agricultural Productivity and Environmental Integrity: A Grand Challenge for Agriculture. Frontiers in Ecology and the Environment, 3, 38-46.
http://dx.doi.org/10.1890/1540-9295(2005)003%5B0038:RAPAEI%5D2.0.CO;2
[63] Hirel, B., Le Gouis, J., Ney, B. and Gallais, A. (2007) The Challenge of Improving Nitrogen Use Efficiency in Crop Plants: Towards a More Central Role for Genetic Variability and Quantitative Genetics within Integrated Approaches. Journal of Experimental Botany, 58, 2369-2387. http://dx.doi.org/10.1093/jxb/erm097
[64] Foulkes, M.J., Hawkesford, M.J., Barraclough, P.B., Holdsworth, M.J., Kerr, S., Kightley, S. and Shewry, P.R. (2009) Identifying Traits to Improve the Nitrogen Economy of Wheat: Recent Advances and Future Prospects. Field Crops Research, 114, 329-342. http://dx.doi.org/10.1016/j.fcr.2009.09.005
[65] Korkmaz, K., Ibrikci, H., Karnez, E., Buyuk, G., Ryan, J., Ulger, A.C. and Oguz, H. (2009) Phosphorus Use Efficiency of Wheat Genotypes Grown in Calcareous Soils. Journal of Plant Nutrition, 32, 2094-2106. http://dx.doi.org/10.1080/01904160903308176
[66] Farooq, M., Kobayashi, N., Wahid, A., Ito, O. and Basra, S.M.A. (2009) Strategies for Producing More Rice with Less Water. Advances in Agronomy, 101, 351-388.
http://dx.doi.org/10.1016/S0065-2113(08)00806-7
[67] Shi, W., Moon, C.D., Leahy, S.C., Kang, D., Froula, J., Kittelmann, S., Fan, C., Deutsch, S., Gagic, D., Seedorf, H., Kelly, W.J., Atua, R., Sang, C., Soni, P., Li, D., Pinares-Patino, C.S., Mcewan, J.C., Janssen, P.H., Chen, F., Visel, A., Wang, Z., Attwood, G.T. and Rubin, E.M. (2014) Methane Yield Phenotypes Linked to Differential Gene Expression in the Sheep Rumen Microbiome. Genome Research, 24, 1517-1525. http://dx.doi.org/10.1101/gr.168245.113
[68] Shrawat, A.K. and Good, A.G. (2008) Genetic Engineering Approaches to Improving Nitrogen Use Efficiency. Plant Research News. ISB Report, May 2008. Information Systems for Biotechnology (ISB) News Report, Blackburg.
http://www.isb.vt.edu/news/2008/news08.may.htm#may0801
[69] Daemrich, A., Reinhardt, F. and Shelman, M. (2008) Arcadia Biosciences: Seeds of Change. Harvard Business School, Boston.
[70] Subbarao, G.V., Tomohiro, B., Masahiro, K., Osamu, I., Samejima, H., Wang, H.Y., Pearse, S.J., Gopalakrishnan, S., Nakahara, K., Zakir Hossain, A.K.M., Tsujimoto, H. and Berry, W.L. (2007) Can Biological Nitrification Inhibition (BNI) Genes from Perennial Leymus racemosus (Triticeae) Combat Nitrification in Wheat Farming? Plant and Soil, 299, 55-64. http://dx.doi.org/10.1007/s11104-007-9360-z
[71] IPCC (Intergovernmental Panel on Climate Change) (2009) The Physical Science Basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
[72] Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson, D., Dixon, J.M., Ortiz-Monasterio, J.I. and Reinolds, M. (2008) Climate Change: Can Wheat Beat the Heat? Agriculture, Ecosystems & Environment, 126, 46-58. http://dx.doi.org/10.1016/j.agee.2008.01.019
[73] Araus, J., Slafer, G., Royo, C. and Serret, M.D. (2008) Breeding for Yield Potential and Stress Adaptation in Cereals. Critical Reviews in Plant Sciences, 27, 377-412.
http://dx.doi.org/10.1080/07352680802467736
[74] Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucoteli, E., Mastrangelo, A.M., Francia, E., Marè, C., Tondelli, A. and Stanca, A.M. (2008) Drought Tolerance Improvement in Crop Plants: An Integrated View from Breeding to Genomics. Field Crops Research, 105, 1-14. http://dx.doi.org/10.1016/j.fcr.2007.07.004
[75] Ceccarelli, S. and Grando, S. (2007) Decentralized-Participatory Plant Breeding: An Example of Demand Driven Research. Euphytica, 155, 349-360. http://dx.doi.org/10.1007/s10681-006-9336-8
[76] Burke, M.B., Lobell, D.B. and Guarino, L. (2009) Shifts in African Crop Climates by 2050, and the Implications for Crop Improvement and Genetic Resources Conservation. Global Environmental Change, 19, 317-325. http://dx.doi.org/10.1016/j.gloenvcha.2009.04.003
[77] Jarvis, D.I., Brown, A.H.D., Cuong, P.H., Collado-Panduro, L., Latoumerie-Moreno, L., Gyawali, S., Tanto, T., Sawadogo, M., Mar, I., Sadiki, M., Hue, N.T., Arias-Reyes, L., Balma, D., Bajracharya, J., Castillo, F., Rijal, D., Belqadi, L., Rana, R., Saidi, S., Quedraogo, J., Zangre, R., Rhrib, K., Chavez, J.L., Schoen, D., Shapit, B., Santis, P.D., Fadda, C. and Hodgkin, T. (2008) A Global Perspective of the Richness and Evenness of Traditional Crop-Variety Diversity Maintained by Farming Communities. Proceedings of the National Academy of Sciences of the United States of America, 105, 5326-5331. http://dx.doi.org/10.1073/pnas.0800607105
[78] Witcombe, J.R., Hollington, P.A., Howarth, C.J., Reader, S. and Steele, K.A. (2008) Breeding for Abiotic Stresses for Sustainable Agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 703-716. http://dx.doi.org/10.1098/rstb.2007.2179
[79] Bhatnagar-Mathur, P., Vadez, V. and Sharma, K.K. (2007) Transgenic Approaches for Abiotic Stress Tolerance in Plants: Retrospect and Prospects. Plant Cell Reports, 27, 411-424. http://dx.doi.org/10.1007/s00299-007-0474-9
[80] Ainsworth, E., Rogers, A. and Leakey, A.D.B. (2008) Targets for Crop Biotechnology in a Future High-CO2 and High-O3 World. Plant Physiology, 147, 13-19. http://dx.doi.org/10.1104/pp.108.117101
[81] Ortiz, R. (2008) Crop Genetic Engineering under Global Climate Change. Annals of Arid Zone, 47, 343-354.
[82] Jewell, M.C., Campbell, B.C. and Godwin, I.D. (2010) Transgenic Plants for Abiotic Stress Resistance. In: Kole, C., Michler, C.H., Abbott, A.G. and Hall, T.C., Eds., Transgenic Crop Plants, Springer-Verlag, Berlin-Heidelberg, 67-132.
[83] Dwivedi, S.L., Upadhyaya, H., Subudhi, P., Gehring, C., Bajic, V. and Ortiz, R. (2010) Enhancing Abiotic Stress Tolerance in Cereals through Breeding and Transgenic Interventions. Plant Breeding Reviews, 33, 31-114.
[84] Dwivedi, S.L., Sahrawat, K., Upadhyaya, H. and Ortiz, R. (2013) Food, Nutrition and Agrobiodiversity under Global Climate Change. Advances in Agronomy, 120, 1-128. http://dx.doi.org/10.1016/B978-0-12-407686-0.00001-4
[85] Ruane, J., Sonnino, A., Steduto, P. and Deane, C. (2008) Coping with Water Scarcity: What Role for Biotechnologies? Land and Water Discussion Paper 7, Food and Agriculture Organization of the United Nations, Rome.
[86] Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences of the United States of America, 103, 18822-18827. http://dx.doi.org/10.1073/pnas.0605639103
[87] Ortiz, R., Iwanaga, M., Reynolds, M.P., Wu, X. and Crouch, J.H. (2007) Overview on Crop Genetic Engineering for Drought-Prone Environments. Journal of SAT Agricultural Research, 4, 1-30.
[88] Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K. and Hoisington, D. (2004) Stress-Induced Expression in Wheat of the Arabidopsis thaliana DREB1A Gene Delays Water Stress Symptoms under Greenhouse Conditions. Genome, 47, 493-500. http://dx.doi.org/10.1139/g03-140
[89] Saint Pierre, C.S., Crossa, J.L., Bonnett, D., Yamaguchi-Shinozaki, K. and Reynolds, M.P. (2012) Phenotyping Transgenic Wheat for Drought Resistance. Journal of Experimental Botany, 63, 1799-1808. http://dx.doi.org/10.1093/jxb/err385
[90] Mumms, R. (2005) Genes and Salt Tolerance: Bringing Them Together. New Phytologist, 167, 645-663. http://dx.doi.org/10.1111/j.1469-8137.2005.01487.x
[91] Chinnusamy, V., Jagendorf, A. and Zhu, J.K. (2005) Understanding and Improving Salt Tolerance in Plants. Crop Science, 45, 437-448. http://dx.doi.org/10.2135/cropsci2005.0437
[92] Wu, H.J., Zhang, Z., Wang, J.Y., Oh, D.H., Dassanayake, M., Liu, B., Huang, Q., Sun, H.X., Xia, R., Wu, Y., Wang, Y.N., Yang, Z., Liu, Y., Zhang, W., Zhang, H., Chu, J., Yan, C., Fang, S., Zhang, J., Wang, Y., Zhang, F., Wang, G., Yeol Lee, S., Cheeseman, J.M., Yang, B., Li, B., Min, J., Yang, L., Wang, J., Chu, C., Chen, S.Y., Bohnert, H.J., Zhu, J.K., Wang, X.J. and Xie, Q. (2012) Insights into Salt Tolerance from the Genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America, 109, 12219-12224. http://dx.doi.org/10.1073/pnas.1209954109
[93] Plett, D., Safwat, G., Gilliham, M., Skrumsager-Moller, I., Roy, S., Shirley, N., Jacobs, A., Johnson, A. and Tester, M. (2010) Improved Salinity Tolerance of Rice through Cell Type-Specific Expression of Athkt1;1. PLoS ONE, 5, e12571. http://dx.doi.org/10.1371/journal.pone.0012571
[94] Moghaieb, R.E., Nakamura, A., Saneoka, H. and Fujita, K. (2011) Evaluation of Salt Tolerance in Ectoine-Transgenic Tomato Plants (Lycopersicon esculentum) in Terms of Photosynthesis, Osmotic Adjustment, and Carbon Partitioning. GM Crops, 2, 58-65. http://dx.doi.org/10.4161/gmcr.2.1.15831
[95] Lybbert, T. and Sumner, D. (2011) Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion. ICTSD-IPC Platform on Climate Change. Agriculture and Trade Issues Brief 6. International Centre for Trade and Sustainable Development, Geneva, Switzerland.
[96] Varshney, R.K., Bansal, K.C., Aggarwal, P.K., Datta, S.K. and Craufurd, P.Q. (2011) Agricultural Biotechnology for Crop Improvement in a Variable Climate: Hope or Hype? Trends in Plant Science, 16, 363-371. http://dx.doi.org/10.1016/j.tplants.2011.03.004
[97] Yamori, W., Hikosaka, K. and Way, D.A. (2013) Temperature Response of Photosynthesis in C3, C4, and CAM Plants: Temperature Acclimation and Temperature Adaptation. Photosynthesis Research, 119, 101-117. http://dx.doi.org/10.1007/s11120-013-9874-6
[98] Ainsworth, E.A. and Ort, D.R. (2010) How Do We Improve Crop Production in a Warming World? Plant Physiology, 154, 526-530. http://dx.doi.org/10.1104/pp.110.161349
[99] Wahid, A., Gelani, S., Ashraf, M. and Foolad, M.R. (2007) Heat Tolerance in Plants: An Overview. Environmental and Experimental Botany, 61, 199-223.
http://dx.doi.org/10.1016/j.envexpbot.2007.05.011
[100] Hasanuzzaman, M., Nahar, K., Alam, Md., Roychowdhury, R. and Fujita, M. (2013) Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14, 9643-9684. http://dx.doi.org/10.3390/ijms14059643
[101] Gao, H., Brandizzi, F., Benning, C. and Larkin, R.M. (2008) A Membrane-Tethered Transcription Factor Defines a Branch of the Heat Stress Response in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 105, 16398-16403. http://dx.doi.org/10.1073/pnas.0808463105
[102] Gusta, L. (2012) Abiotic Stresses and Agricultural Sustainability. Journal of Crop Improvement, 26, 415-427. http://dx.doi.org/10.1080/15427528.2011.650296
[103] Katiyar-Agarwal, S., Agarwal, M. and Grover, A. (2003) Heat-Tolerant Basmati Rice Engineered by Over-Expression of hsp101. Plant Molecular Biology, 51, 677-686.
http://dx.doi.org/10.1023/A:1022561926676
[104] Pimentel, D. (1997) Techniques for Reducing Pesticide Use: Economic and Environmental Bene?ts. Wiley, New York.
[105] Oerke, E.C., Dehne, H.W., Schonbeck, F. and Weber, A. (1994) Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops. Elsevier, Amsterdam.
[106] Tripathi, L., Mwaka, H., Tripathi, J.N. and Tushemereirwe, W. (2010) Expression of Sweet Pepper Hrap Gene in Banana Enhances Resistance to Xanthomonas campestris pv. Musacearum. Molecular Plant Pathology, 11, 721-731.
[107] Ortiz, R., Jarvis, A., Aggarwal, P.K. and Campbell, B.M. (2014) Plant Genetic Engineering, Climate Change and Food Security. CCAFS Working Paper No. 72. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.
[108] Haverkort, A.J., Boonekamp, P.M., Hutten, R., Jacobsen, E., Lotz, L.A.P., Kessel, G.J.T., Visser, R.F.G. and Van Der Vossen, E.A.G. (2008) Societal Costs of Late Blight in Potato and Prospects of Durable Resistance through Cisgenic Modification. Potato Research, 51, 47-57.
http://dx.doi.org/10.1007/s11540-008-9089-y
[109] Jacobs, D.F. (2007) Toward Development of Silvical Strategies for Forest Restoration of American Chestnut (Castanea dentata) Using Blight Resistant Hybrids. Biological Conservation, 137, 497-506.
http://dx.doi.org/10.1016/j.biocon.2007.03.013
[110] Santini, A., La Porta, N., Ghelardini, L. and Mittempergher, L. (2007) Breeding against Dutch Elm Disease Adapted to the Mediterranean Climate. Euphytica, 163, 45-56.
http://dx.doi.org/10.1007/s10681-007-9573-5
[111] Bouton, J. (2007) The Economic Benefits of Forage Improvement in the United States. Euphytica, 154, 263-270. http://dx.doi.org/10.1007/s10681-006-9220-6
[112] Pimentel, D., Allen, J., Beers, A., Guinand, L., Linder, R., Mclaughlin, P., Meer, B., Musonda, D., Perdue, D., Poisson, S., Siebert, S., Stoner, K., Salazar, R. and Hawkinset, A. (1987) World Agriculture and Soil Erosion. Erosion Threatens World Food Production. Bioscience, 37, 277-283. http://dx.doi.org/10.2307/1310591
[113] Glover, J.D., Cox, C.M. and Reganold, J.P. (2007) Future Farming: A Return to Roots? Scientific American, 297, 82-89. http://dx.doi.org/10.1038/scientificamerican0807-82
[114] Jackson, W., Cox, S., Dehaan, L., Glover, J., Van Tassel, D. and Cox, C. (2009) The Necessity and Possibility of an Agriculture Where Nature Is the Measure. In: Bohlen, P.J. and House, G., Eds., Sustainable Agroecosystem Management, CRC Press, Boca Raton, 61-71.
[115] Blanco, H. and Lal, R., Eds. (2008) Principles of Soil Conservation and Management. Springer, New York.
[116] Olson, K.R., Ebelhar, S.A. and Lang, J.M. (2010) Cover Crops Effects on Crop Yields and Soil Organic Content. Soil Science, 175, 89-98. http://dx.doi.org/10.1097/SS.0b013e3181cf7959
[117] Kaumbutho, P. and Kienzle, J. (2008) Conservation Agriculture as Practiced in Kenya: Two Case Studies. Food and Agriculture Organization of the United Nations, Rome.
[118] Pretty, J.N. and Hine, R. (2001) Reducing Food Poverty with Sustainable Agriculture: A Summary of New Evidence. Final Report of the “SAFE-World” (The Potential of Sustainable Agriculture to Feed the World) Research Project. Centre for Environment and Society, University of Essex, Colchester.
[119] Kendle, A.D. and Rose, J.E. (2000) The Aliens Have Landed! What Are the Justifications for “Native Only” Policies in Landscape Plantings? Landscape and Urban Planning, 47, 19-31. http://dx.doi.org/10.1016/S0169-2046(99)00070-5
[120] Zhao, F.J. and Mcgrath, S.P. (2009) Biofortification and Phytoremediation. Current Opinion in Plant Biology, 12, 373-380. http://dx.doi.org/10.1016/j.pbi.2009.04.005
[121] Yin, X., Yuan, L., Liu, Y. and Lin, Z. (2012) Phytoremediation and Biofortification: Two Sides of One Coin. In: Yin, X. and Yuan, L., Eds., Phytoremediation and Biofortification, Springer Briefs in Green Chemistry for Sustainable, Springer, New York, 1-6.
[122] Pilon-Smits, E. (2005) Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
http://dx.doi.org/10.1146/annurev.arplant.56.032604.144214
[123] Kramer, U. (2005) Phytoremediation: Novel Approaches to Cleaning up Polluted Soils. Current Opinion in Biotechnology, 16, 133-141. http://dx.doi.org/10.1016/j.copbio.2005.02.006
[124] Doty, S.L. (2008) Enhancing Phytoremediation through the Use of Transgenics and Endophytes. New Phytologist, 179, 318-333. http://dx.doi.org/10.1111/j.1469-8137.2008.02446.x
[125] Chaney, R.L., Angle, J.S., Broadhurst, C.L., Peters, C.A., Tappero, R.V. and Parks, D.L. (2007) Improved Understanding of Hyperaccumulation Yields Commercial Phytoextraction and Phytomining Technologies. Journal of Environmental Quality, 36, 1429-1443.
http://dx.doi.org/10.2134/jeq2006.0514
[126] Mcgrath, S.P. and Zhao, F.J. (2003) Phytoextraction of Metals and Metalloids from Contaminated Soils. Current Opinion in Biotechnology, 14, 277-282.
http://dx.doi.org/10.1016/S0958-1669(03)00060-0
[127] Murakami, M., Ae, N., Ishikawa, S., Ibaraki, T. and Ito, M. (2008) Phytoextraction by a High-Cd-Accumulating Rice: Reduction of Cd Content of Soybean Seeds. Environmental Science & Technology, 42, 6167-6172. http://dx.doi.org/10.1021/es8001597
[128] Ueno, D., Kono, I., Yokosho, K., Ando, T., Yano, M. and Ma, J.F. (2009) A Major Quantitative Trait Locus Controlling Cadmium Translocation in Rice (Oryza sativa). New Phytologist, 182, 644-653.
http://dx.doi.org/10.1111/j.1469-8137.2009.02784.x
[129] Grant, C.A., Clarke, J.M., Duguid, S. and Chaney, R.L. (2008) Selection and Breeding of Plant Cultivars to Minimize Cadmium Accumulation. Science of the Total Environment, 390, 301-310.
http://dx.doi.org/10.1016/j.scitotenv.2007.10.038
[130] Mcgrath, S.P., Lombi, E., Gray, C.W., Caille, N., Dunham, S.J. and Zhao, F.J. (2006) Field Evaluation of Cd and Zn Phytoextraction Potential by the Hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 141, 115-125. http://dx.doi.org/10.1016/j.envpol.2005.08.022
[131] Maxted, A.P., Black, C.R., West, H.M., Crout, N.M.J., Mcgrath, S.P. and Young, S.D. (2007) Phytoextraction of Cadmium and Zinc from Arable Soils Amended with Sewage Sludge Using Thlaspi caerulescens: Development of a Predictive Model. Environmental Pollution, 150, 363-372. http://dx.doi.org/10.1016/j.envpol.2007.01.021
[132] Zhao, F.J., Hamon, R.E., Lombi, E., Mclaughlin, M.J. and Mcgrath, S.P. (2002) Characteristics of Cadmium Uptake in Two Contrasting Ecotypes of the Hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53, 535-543. http://dx.doi.org/10.1093/jexbot/53.368.535
[133] Kertulis-Tartar, G.M., Ma, L.Q., Tu, C. and Chirenje, T. (2006) Phytoremediation of an Arsenic-Contaminated Site Using Pteris vittata L.: Two-Year Study. International Journal of Phytoremediation, 8, 311-322. http://dx.doi.org/10.1080/15226510600992873
[134] Salido, A.L., Hasty, K.L., Lim, J.M. and Butcher, D.J. (2003) Phytoremediation of Arsenic and Lead in Contaminated Soil Using Chinese Brake Ferns (Pteris vittata) and Indian Mustard (Brassica juncea). International Journal of Phytoremediation, 5, 89-103. http://dx.doi.org/10.1080/713610173
[135] Dickinson, N.M. and Pulford, I.D. (2005) Cadmium Phytoextraction Using Short-Rotation Coppice Salix: The Evidence Trail. Environment International, 31, 609-613.
http://dx.doi.org/10.1016/j.envint.2004.10.013
[136] Wieshammer, G., Unterbrunner, R., Garcia, T.B., Zivkovic, M.F., Puschenreiter, M. and Wenzel, W.W. (2007) Phytoextraction of Cd and Zn from Agricultural Soils by Salix ssp. and Intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298, 255-264.
http://dx.doi.org/10.1007/s11104-007-9363-9
[137] Lievens, C., Yperman, J., Cornelissen, T. and Carleer, R. (2008) Study of the Potential Valorisation of Heavy Metal Contaminated Biomass via Phytoremediation by Fast Pyrolysis. Part II. Characterisation of the Liquid and Gaseous Fraction as a Function of the Temperature. Fuel, 87, 1906-1916. http://dx.doi.org/10.1016/j.fuel.2007.10.023
[138] Rooney, W., Blumenthal, J., Bean, B. and Mullet, J. (2007) Designing Sorghum as a Dedicated Bioenergy Feedstock. Biofuels, Bioproducts and Biorefining, 1, 147-157.
http://dx.doi.org/10.1002/bbb.15
[139] Jessup, R.W. (2009) Development and Status of Dedicated Energy Crops in the United States. In Vitro Cellular & Developmental Biology-Plant, 45, 282-290.
[140] Robertson, G.P., Dale, V.H., Doering, O.C., Hamburg, S.P., Melillo, J.M., Wander, M.M., Parton, W.J., Adler, P.R., Barney, J.N., Cruse, R.M., Duke, C.F., Fearnside, P.M., Follett, R.F., Gibbs, H.K., Goldemberg, J., Mladenoff, D.J., Ojima, D., Palmer, M.W., Sharpley, A., Wallace, L., Weathers, K.C., Wiens, J.A. and Wilhelm, W.W. (2008) Sustainable Biofuels Redux. Science, 322, 49-50. http://dx.doi.org/10.1126/science.1161525
[141] Cook, R.J. (2006) Toward Cropping Systems that Enhance Productivity and Sustainability. Proceedings of the National Academy of Sciences of the United States of America, 103, 18389-18394.
http://dx.doi.org/10.1073/pnas.0605946103
[142] Carpenter, J. (2011) Impacts of GM Crops on Biodiversity. GM Crops, 2, 7-23.
http://dx.doi.org/10.4161/gmcr.2.1.15086
[143] Icoz, I. and Stotzky, G. (2008) Fate and Effects of Insect-Resistant Bt Crops in Soil Ecosystems. Soil Biology and Biochemistry, 40, 559-586. http://dx.doi.org/10.1016/j.soilbio.2007.11.002
[144] Hoheisel, G.A. and Fleischer, S.J. (2007) Coccinelids, Aphids, and Pollen in Diversified Vegetable Fields with Transgenic and Isoline Cultivars. Journal of Insect Science, 7, 1-12.
http://dx.doi.org/10.1673/031.007.6101
[145] Leslie, T.W., Hoheisel, G.A., Biddinger, D.J., Rohr, J.R. and Fleisher, S.J. (2007) Transgenes Sustain Epigeal Insect Biodiversity in Diversified Vegetable Farm Systems. Environmental Entomology, 36, 234-244. http://dx.doi.org/10.1603/0046-225X(2007)36%5B234:TSEIBI%5D2.0.CO;2
[146] Jorgensen, R.B. and Andersen, B. (1994) Spontaneous Hybridization between Oilseed Rape (Brassica napus) and Weedy B. campestris (Brassicaceae): A Risk of Growing Genetically Modified Oilseed Rape. American Journal of Botany, 81, 1620-1626. http://dx.doi.org/10.2307/2445340
[147] Hansen, L.B., Siegismund, H.R. and Jorgensen, R.B. (2003) Progressive Introgression between Brassica napus (Oilseed Rape) and B. rapa. Heredity, 91, 276-283.
http://dx.doi.org/10.1038/sj.hdy.6800335
[148] Stewart Jr., C.N., Halfhill, M.D. and Warwick, S.I. (2003) Transgene Introgression from Genetically Modified Crops to Their Wild Relatives. Nature Reviews Genetics, 4, 806-817.
http://dx.doi.org/10.1038/nrg1179
[149] Brown, J. and Brown, A.P. (1996) Gene Transfer between Canola (Brassica napus and B. campestris) and Related Weed Species. Annals of Applied Biology, 129, 513-522.
http://dx.doi.org/10.1111/j.1744-7348.1996.tb05773.x
[150] Mikkelsen, T.R., Anderson, B. and Jorgensen, R.B. (1996) The Risk of Crop Transgene Spread. Nature, 380, 31. http://dx.doi.org/10.1038/380031a0
[151] Boudry, P., Broomberg, K., Saumitou-Laprade, P., Morchen, M., Cuegen, J. and Van Dijk, H. (1994) Gene Escape in Transgenic Sugar Beet: What Can Be Learned from Molecular Studies of Weed Beet Populations? Proceedings of the 3rd International Symposium on the Biosafety, Results of Field Tests of Genetically-Modified Plants and Microorganisms, University of California, Division of Agriculture and Natural Resources, Oakland, 75-83.
[152] Rose, C.W., Millwood, R.J., Moon, H.S., Rao, M.R., Halfhill, M.D., Raymer, P.L., Warwick, S.I., Al-Ahmad, H., Gressel, J. and Stewart Jr., C.N. (2009) Genetic Load and Transgenic Mitigating Genes in Transgenic Brassica rapa (Field Mustard) × Brassica napus (Oilseed Rape) Hybrid Populations. BMC Biotechnology, 9, 93. http://dx.doi.org/10.1186/1472-6750-9-93
[153] Palaudelmàs, M., Penas, G., Mele, E., Serra, J., Salvia, J., Pla, M., Nadal, A. and Messeguer, J. (2009) Effect of Volunteers on Maize Gene Flow. Transgenic Research, 18, 583-594.
http://dx.doi.org/10.1007/s11248-009-9250-7
[154] Carpenter, J.E. (2010) Peer-Reviewed Surveys Indicate Positive Impact of Commercialized GM Crops. Nature Biotechnology, 28, 319-321. http://dx.doi.org/10.1038/nbt0410-319
[155] Brookes, G., Yu, T.H., Tokgoz, S. and Elobeid, A. (2010) The Production and Price Impact of Biotech Corn, Canola, and Soybean Rops. AgBioForum, 13, 25-52.
[156] Storer, N.P., Dively, G.P. and Herman, R.A. (2008) Landscape Effects of Insect-Resistant Genetically Modified Crops. In: Romeis, J., Shelton, A.M. and Kennedy, G.G., Eds., Integration of Insect-Resistant Genetically Modified Crops within IPM Programs, Springer, New York, 273-302.
[157] Naranjo, S.E. (2005) Field Studies Assessing Arthropod Non-Target Effects of Bt Transgenic Crops: Introduction. Environmental Entomology, 34, 1178-1180.
[158] Naranjo, S.E. (2005) Long-Term Assessment of the Effects of Transgenic Bt Cotton on the Abundance of Non-Target Arthropod Natural Enemies. Environmental Entomology, 34, 1193-1210.
http://dx.doi.org/10.1603/0046-225X(2005)034%5B1193:LAOTEO%5D2.0.CO;2
[159] Naranjo, S.E. (2005) Long-Term Assessment of the Effects of Transgenic Bt Cotton on the Function of the Natural Enemy Community. Environmental Entomology, 34, 1211-1223.
http://dx.doi.org/10.1603/0046-225X(2005)034%5B1211:LAOTEO%5D2.0.CO;2
[160] Wolfenbarger, L.L., Naranjo, S.E., Lundgren, J.G., Bitzer, R.J. and Watrud, L.S. (2008) Bt Crop Effects on Functional Guilds of Non-Target Arthropods: A Meta-Analysis. PLoS ONE, 3, e2118.
http://dx.doi.org/10.1371/journal.pone.0002118
[161] Naranjo, S.E. (2009) Impacts of Bt Crops on Non-Target Invertebrates and Insecticide Use Patterns. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4, 1-23. http://dx.doi.org/10.1079/PAVSNNR20094011
[162] Duan, J.J., Lundgren, J.G., Naranjo, S. and Marvier, M. (2009) Extrapolating Non-Target Risk of Bt Crops from Laboratory to Field. Biology Letters, 6, 74-77. http://dx.doi.org/10.1098/rsbl.2009.0612
[163] Brookes, G. and Barfoot, P. (2012) Global Economic and Environmental Benefits of GM Crops Continue to Rise. PG Economics 2012. http://www.pgeconomics.co.uk/page/33/global-impact-2012
[164] Bennet, R., Phipps, R., Strange, A. and Grey, P. (2004) Environmental and Human Health Impacts of Growing Genetically Modified Herbicide-Tolerant Sugar Beet: A Life-Cycle Assessment. Plant Biotechnology Journal, 2, 273-278.
http://dx.doi.org/10.1111/j.1467-7652.2004.00076.x
[165] National Research Council (2010) The Impact of Genetically Engineered Crops on Farm Sustainability in the United States. National Academies, Washington DC.
[166] Wang, S., Just, D.R. and Pinstrup-Andersen, P. (2008) Bt-Cotton and Secondary Pests. International Journal of Biotechnology, 10, 113-120. http://dx.doi.org/10.1504/IJBT.2008.018348
[167] Wang, Z.J., Lin, H., Huang, J., Hu, R., Rozelle, S. and Pray, C. (2009) Bt Cotton in China: Are Secondary Insect Infestations Offsetting the Benefits in Farmer Fields? Agricultural Sciences in China, 8, 83-90. http://dx.doi.org/10.1016/S1671-2927(09)60012-2
[168] Gassmann, A.J., Petzold-Maxwell, J.L., Keweshan, R. and Dunbar, M.W. (2011) Field-Evolved Resistance to Bt Maize by Western Corn Rootworm. PLoS ONE, 6, e22629. http://dx.doi.org/10.1371/journal.pone.0022629
[169] Fowler, C. (2011) Conserving Diversity: The Challenge of Cooperation. Acta Horticulturae, 916, 19-24.
[170] Ortiz, R., Mowbray, D., Dowswell, C. and Rajaram, S. (2007) Norman E. Borlaug: The Humanitarian Plant Scientist Who Changed the World. Plant Breeding Reviews, 28, 1-37. http://dx.doi.org/10.1002/9780470168028.ch1
[171] Ortiz, R., Braun, H.J., Crossa, J., Crouch, J.H., Davenport, G., Dixon, J., Dreisigacker, S., Duveiller, E., He, Z., Huerta, J., Joshi, A.K., Kishii, M., Kosina, P., Manes, Y., Mezzalama, M., Morgounov, A., Murakami, J., Nicol, J., Ortiz-Ferrara, G., Ortiz-Monasterio, J.I., Payne, T.S., Pena, R.J., Reynolds, M.P., Sayre, K.D., Sharma, R.C., Singh, R.P., Wang, J., Warburton, M., Wu, H. and Iwanaga, M. (2008) Wheat Genetic Resources Enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 55, 1095-1140.
http://dx.doi.org/10.1007/s10722-008-9372-4
[172] Reynolds, M.P. and Borlaug, N.E. (2006) International Collaborative Wheat Improvement: Impacts and Future Prospects. Journal of Agricultural Science, 144, 3-17.
http://dx.doi.org/10.1017/S0021859606005867
[173] Lantican, M.A., Dubin, M.J. and Morris, M.L. (2005) Impacts of International Wheat Breeding Research in the Developing World, 1988-2002. Centro Internacional de Mejoramiento de Maíz y Trigo, México D.F.
[174] Alston, J.M., Marra, M.C., Pardey, P.G. and Wyatt, T.J. (2000) Research Returns Redux: A Meta-Analysis of the Returns to Agricultural R&D. Australian Journal of Agricultural and Resource Economics, 44, 185-215. http://dx.doi.org/10.1111/1467-8489.00107
[175] Evenson, R.E. and Gollin, D. (1997) Genetic Resources, International Organizations, and Improvement in Rice Varieties. Economic Development and Cultural Change, 45, 471-500. http://dx.doi.org/10.1086/452288
[176] Jackson, M.T. and Huggan, R.D. (1993) Sharing the Diversity of Rice to Feed the World. Diversity, 9, 22-25.
[177] Salhuana, W. and Pollak, L. (2006) Latin American Maize Project (LAMP) and Germplasm Enhancement of Maize (GEM) Project: Generating Useful Breeding Germplasm. Maydica, 51, 339-355.
[178] Taba, S., Díaz, J., Franco, J., Crossa, J. and Eberhart, S.A. (1999) A Core Subset of LAMP from the Latin American Maize Project. CD-Rom. Centro Internacional de Mejoramiento de Maíz y Trigo, México D.F.
[179] Balint-Kurti, P., Blanco, M., Milard, M., Duvick, S., Holland, J., Clements, M., Holley, R., Carson, M.L. and Goodman, M. (2006) Registration of 20 GEM Maize Breeding Germplasm Lines Adapted to the Southern USA. Crop Science, 46, 996-998. http://dx.doi.org/10.2135/cropsci2005.04-0013
[180] Goodman, M.M. (2005) Broadening the U.S. Maize Germplasm Base. Maydica, 50, 203-214.
[181] Ortiz, R., Taba, S., Chávez-Tovar, V.H., Mezzalama, M., Xu, Y., Yan, J. and Crouch, J.H. (2010) Conserving and Enhancing Maize Genetic Resources as Global Public Goods—A Perspective from CIMMYT. Crop Science, 50, 13-28. http://dx.doi.org/10.2135/cropsci2009.06.0297
[182] Delmer, D.P. (2005) Agriculture in the Developing World: Connecting Innovations in Plant Research to Downstream Applications. Proceedings of the National Academy of Sciences of the United States of America, 102, 15739-15746. http://dx.doi.org/10.1073/pnas.0505895102                                                eww150119lx

Influence of Some Soil Characteristics on Defoliation of Cryptomeria japonica

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53066#.VLST0snQrzE

Author(s)

ABSTRACT

The defoliation of Cryptomeria japonica is observed in shrine forests around Hikone, Japan. Here, moisture content, soil pH, exchangeable Mg, Ca and Al of soil in shrine forests of C. japonica were examined in order to assess the relationship between these factors and defoliation. There was no relationship between soil pH, exchangeable Mg and Ca in soil and the degree of defoliation in shrine forests. Exchangeable Al in the soil of shrine forests increased with decreasing soil pH below pH 5.0, but there was no relationship between exchangeable Al and degree of defoliation in shrine forests. Soil moisture content differed between severely defoliated forests and forests with no defoliation. Soil moisture is thought to play a large role in inducing defoliation of C. japonica. Based on results from previous studies, the declining forests in the basin of the Kuzuryu River in Fukui Prefecture and in the basin of the Koito River in Chiba Prefecture reported by Yambe (1973) were considered to have been caused by the construction of dams. On these rivers, dams were constructed several years before the forest decline researched by Yambe. Dam construction is thought to have caused the low moisture content in the basins.

Cite this paper

Ueda, K. (2015) Influence of Some Soil Characteristics on Defoliation of Cryptomeria japonica. Open Journal of Forestry, 5, 28-37. doi: 10.4236/ojf.2015.51004.

References

[1] Cronan, C. S. (1991). Differential Adsorption of Al, Ca, and Mg by Roots of Red Spruce (Picea rubens Sarg.). Tree Physiology, 8, 227-237. http://dx.doi.org/10.1093/treephys/8.3.227
[2] De Vries, W., Vel, E., Reinds, G. J., Deelstra, H., Klap, J. M., Leeters, E. E. J. M., Hendriks, C. M. A., Kerkvoorden, M., Landmann, G., Herkendell, J., Haussmann, T., & Erisman, J. W. (2003). Intensive Monitoring of Forest Ecosystems in Europe 1. Objectives, Set-Up and Evaluation Strategy. Forest Ecology and Management, 174, 77-95.
http://dx.doi.org/10.1016/S0378-1127(02)00029-4
[3] Dobbertin, M. (2005). Tree Growth as Indicator of Tree Vitality and of Tree Reaction to Environmental Stress: A Review. European Journal of Forest Research, 124, 319-333.
http://dx.doi.org/10.1007/s10342-005-0085-3
[4] Drobyshev, I., Anderson, S., & Sonesson, K. (2007). Crown Condition Dynamics of Oak in Southern Sweden 1988-1999. Environmental Monitoring and Assessment, 134, 199-210.
http://dx.doi.org/10.1007/s10661-007-9610-9
[5] Jonard, M., Legout, A., Nicolas, M., Dambrine, E., Ulrich, C. N. E., van der Perre, R., & Ponette, Q. (2011). Deterioration of Norway Spruce Vitality Despite a Sharp Decline in Acid Deposition: A Long-Term Integrated Perspective. Global Change Biology, 18, 711-725. http://dx.doi.org/10.1111/j.1365-2486.2011.02550.x
[6] Kandler, O. (1992). Historical Declines and Diebacks of Central European Forests and Present Conditions. Environmental Toxicology and Chemistry, 11, 1077-1093.
http://dx.doi.org/10.1002/etc.5620110805
[7] Kandler, O., & Miller, W. (1990/1991). Dynamics of “Acute Yellowing” in Spruce Connected with Mg Deficiency. Water, Air, and Soil Pollution, 54, 21-34. http://dx.doi.org/10.1007/BF00298650
[8] Klap, J. N., Voshaar, J. H. O., Vries, W. D., & Erisman, J. W. (2000). Effects of Environmental Stress on Forest Crown Condition in Europe. Part IV: Statistical Analysis of Relationships. Water, Air, and Soil Pollution, 119, 387-420.
http://dx.doi.org/10.1023/A:1005157208701
[9] Mehlhorn, H., Francis, B. J., & Wellburn, A. R. (1988). Prediction of the Probability of Forest Decline Damage to Norway Spruce Using Three Simple Site-Independent Diagnostic Parameters. New Phytologist, 110, 525-534.
http://dx.doi.org/10.1111/j.1469-8137.1988.tb00292.x
[10] Nashimoto, M., & Takahashi, K. (1991). Decline of Japanese Cedar (Cryptomeria japonica D. Don) Trees in the Kanto-Koshin and Kansai-Setouchi District. Japanese Journal for Environ, 32, 70-78.
[11] Ozolincius, R., & Stakenas, V. (1996). Tree Crown Defoliation: Influencing Factors. Baltic Forestry, 2, 48-55.
[12] Takahashi, K., Okitsu, S., & Ueda, H. (1986). Acid Deposition and Japanese Cedar Decline in Kanto Region, Japan. Japanese Journal for Environ, 28, 11-17.
[13] The Japan Dam Foundation (2014). Dams in Japan.
http://damnet.or.jp/Dambinran/binran/TopIndex_en.html
[14] Yambe, Y. (1973). Declining of Trees in Tokyo. Bulletin of FFPRI, 257, 101-107.
http://www.ffpri.affrc.go.jp/labs/kanko/257-4.pdf
[15] Yambe, Y. (1978). Declining of Trees and Microbial Florae as the Index of Pollution in Some Urban Areas. Bulletin of FFPRI, 301, 119-129. http://www.ffpri.affrc.go.jp/labs/kanko/301-4.pdf                         eww150113lx

Indigenous Fruit Trees of Tropical Africa: Status, Opportunity for Development and Biodiversity Management

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53011#.VK9ImcnQrzE

ABSTRACT

Tropical fruit trees constitute important biological resources in the global agrobiodiversity context. Unlike the tropical fruit trees of American and Asian origin, indigenous fruit trees (IFT) of tropical Africa have scarcely achieved the status of international recognition in commodity markets and research arena outside Africa. This paper presented a critical review of the status of IFT in the Tropical African sub-regions (of West Africa, Central Africa, East Africa, Southern Africa and the Indian Ocean Islands) in relation to the introduced naturalised fruit trees from tropical America and Asia, threats to the diversity and sustainable use of IFT, analysis of the opportunities and challenges of developing IFT, as well as targets for crop improvement of the rich IFT of Tropical Africa. Domestication programme via relevant vegetative propagation techniques for priority IFT of the sub-regions was examined and advocated, in addition to the adoption of complementary conservation strategies, including Field GeneBanks in the management of the continent’s IFT diversity.

Cite this paper

Awodoyin, R. , Olubode, O. , Ogbu, J. , Balogun, R. , Nwawuisi, J. and Orji, K. (2015) Indigenous Fruit Trees of Tropical Africa: Status, Opportunity for Development and Biodiversity Management. Agricultural Sciences, 6, 31-41. doi: 10.4236/as.2015.61004.

References

[1] Rathore, D.S. (2003) Role of Genetic Resources in Improvement of Tropical Fruit Species. In: Chaudhury, R., Panday, R., Malik, S.K. and Mal, B., Eds., In Vitro Conservation and Croypreservation of Tropical Fruits Species, IPGRI Office for South, Asia New Delhi/NBPGR, New Delhi, 17-25.
[2] Kulnlein, H., Erasmus, B. and Spigelski, D., Eds. (2009) Indigenous People Food Systems. FAO and Centre for Indigenous People’s Nutrition and Environment, Rome, 251-281.
[3] Lapena, I., Turdieva, M., Noriega, I.L. and Ayad, W.G. (2014) Conservation of Fruit Tree Diversity in Central Asia: Policy Options and Challenges. Bioversity International, Rome, 251 p.
[4] Paull, R.E. and Duarte, O., Eds. (2011) Tropical Fruits. 2nd Edition, CAB International, London, 1-10.
[5] Sthapit, B., Rao, V.R. and Sthapit, S., Eds. (2012) Tropical Fruit Trees Species and Climate Change. Bioversity International, New Delhi, 15-26, 97-125.
[6] Jaramillo, E.H., Sensi, A., Brandenberg, O., Ghosh, K. and Sonnino, A. (2011) Biosafety Resourcebook; Module (b): Ecological Aspects. Food and Agricultural Organisation (FAO), Rome, 10-49.
[7] FAO (2010) Statistical Yearbook 2010.
http://www.fao.org/fileadmin/templates/ess/ess_test_folder/publications/yearbook_2010/c11.xls
[8] Grace, O.M., Borus, D.J. and Bosch, C.H., Eds. (2008) Vegetable Oils of Topical Africa. Conclusions and Recommendations Based on PROTA I4: Vegetable Oils. Plant Resources of Tropical Africa (PROTA) Foundation, Nairobi, 84 p.
[9] Newman, J.L., Mehretu, A., Shillington, K. and Stock, R. (2009) Africa. Microsoft® Encarta® 2009 [DVD]. Microsoft Corporation, Redmond, 2008.
[10] Okigbo B.N. (1997) Neglected Plants of Horticultural and Nutritional Importance in Traditional Farming Systems of Africa. Acta Horticulturae, 53, 131-150.
[11] Meregini, A.O.A. (2005) Some Endangered Plants Producing Edible Fruits and Seed in Southeastern Nigeria. Fruits, 60, 211-220.
[12] Bosch, C.H., Siemonsma, J.S., Lemmens, R.H.M.J. and Oyen, L.P.A. (2002) Plant Resources of Tropical Africa Basic List of Species and Commodity Grouping. PROTA Programme, Wageningen, 7-12.
[13] Siemonsma, J.S., Schmelzer, G.H. and Rodrigues, W. (2004) PROTA 2004 Annual Report. Plant Resources of Tropical Africa (PROTA), Wageningen University and Research, Wageningen, 5-7.
[14] The National Academies (2008) Lost Crops of Africa: Volume 3. Fruits. National Academies Press, Washington DC, 381 p. http://www.nap.edu/catalog/11879.html
[15] Ogbu, J.U. and Ibekwe, H.N. (2013) Characterization and Distribution of Indigenous Plants Research in Horticultural Society of Nigeria (HORTSON) Publications. Nigerian Journal of Horticultural Science, 18, 35-41.
[16] Cobley, L.S. and Steele, W.M. (1976) Introduction to the Botany of Tropical Crops. 2nd Edition, Longman, London.
[17] Purseglove, J.W. (1978) Tropical Crops: Monocotyledons Vol. 1 & 2. Longman Group, London, 607 p.
[18] Purseglove, J.W. (1984) Tropical Crops: Dicotyledons Vol. 1 & 2. Longman Group, London, 719 p.
[19] Youdeowei, A., Ezedinma, F.O.C. and Onazi, O.C. (1986) Introduction to Tropical Agriculture. Longman, London, 344 p.
[20] Opeke, L.K. (1987) Tropical Tree Crops. Spectrum Books, Ibadan, 327 p.
[21] Yayock, J.Y., Lombin, G. and Owonubi, J.J. (1988) Crop Science and Production in Warm Climates. Macmillan Publishers, London, 307 p.
[22] MacDonald, I. and Low, J. (1990) Fruits and Vegetables. Evans Brothers Ltd., Nairobi, 137 p.
[23] Matthew, I.P. and Karikari, S.K. (1990) Horticulture: Principles and Practices. Macmillan Publishers, London, 202 p.
[24] Muok, B.O., Owuor, B., Dawson, I. and Were, J. (2000) The Potential of Indigenous Fruit Trees: Results of a Survey in Kitui District, Kenya. Agroforestry Today, 12, 13-16.
[25] Mithofer, D. (2005) Economics of Indigenous Fruit Tree Crops in Zimbabwe. Ph.D. Thesis, Department of Economics and Business Administration, University of Hannover, Hannover, 250 p.
[26] Simon, T. (1997) Tree Domestication—Better Trees for Rural Prosperity. Agroforestry Today, 9, 4-5.
[27] Altieri, M.A. (2000) Agroecology: Principles and Strategies for Designing Sustainable Farming Systems. Hayworth Press, New York.
[28] Leakey, R.R.B. (2000) Tree Domestication. The Overstory #31.
http://www.agroforestry.net/overstory/overstory31.html.
[29] Pauku, R.L. (2005) Domestication of Indigenous Nuts for Agroforestry in the Solomon’s Islands. Ph.D. Thesis, James Cook University, Cairns, 381 p.
[30] Akinnifesi, F.K., Leakey, R.R.B., Ajayi, O.C., Sileshi, G., Tchoundjeu, Z., Matakala, P. and Kwesiga, F. (2007) Indigenous Fruit Trees in the Tropics: Domestication, Utilization and Commercialization. CAB International, Wallingford, 28-49. http://dx.doi.org/10.1079/9781845931100.0000
[31] Jaenicke, H. and Hoschle-Zeledon, I. (2006) Strategic Framework for Underutilized Plant Species Research and Development with Special Reference to Asia and the Pacific, and to Sub-Saharan Africa. International Centre for Underutilized Crops, Rome, 33 p.
[32] Dawson, I.K., Guarino, L. and Jaenicke, H. (2007) Underutilized Plant Species: Impact of Promotion on Biodiversity. Position Paper No. 2. International Centre for Underutilized Crops (ICUC), Colombo.
[33] Leakey, R.R.B., Nevenimo, T., Moxon, J., Pauku, R., Tate, H., Page, T. and Cornelius, J. (2010) Domestication and Improvement of Tropical Crops for Multi-Functional Farming Systems. Contemporary Crop Improvement: A Tropical View. 14th Australasian Plant Breeding Conference (APBC) and the 11th Congress of the Society for the Advancement of Breeding Research in Asia and Oceania (SABRAO), 10-14 August 2009, Cairns, 57.
[34] O’Neil, G.A., Dawson, I., Sotelo-Montes, C., Guarino, L. and Weber, J.C. (2001) Genetic Conservation of Tropical Trees. Biodiversity and Conservation, 10, 837-850.
http://dx.doi.org/10.1023/A:1016644706237
[35] Dawson, I., Harwood, C., Jamnadass, R. and Beniest, J. (2012) Agroforestry Tree Domestication: A Primer. The World Agroforestry Centre, Nairobi, 148 p.
[36] Halewood, M., Baidu-Forson, J.J., Clancy, E. and Vodouhe, R.S. (2014) Cooperating to Make the Best Use of Plant Genetic Resources in West and Central Africa: A Regional Imperative. Bioversity International, Rome, and CORAF/ WECARD, Dakar.
[37] Jaenicke, H. and Beniest, J. (2002) Vegetative Tree Propagation in Agroforestry. ICRAF, Nairobi, 1-30, 75-82.
[38] Verheij, E. (2006) Agrodok 5 Fruit Growing in the Tropics. 3rd Edition, Agromisa Foundation & CTA, Wageningen, 35-40.
[39] Scrase, R. (2009) Focus on—Domesticating Wild Trees in Botswana. New Agriculturist Online Journal.
file:///E:/newag/focus/focusitem795.html
[40] Tchoundjeu, Z., De Wolf, J. and Jaenicke, H. (1997) Vegetative Propagation for Domestication of Agroforestry Trees. Agroforestry Today, 9, 10-12.
[41] Verheij, E. (2004) Agrodok-19 Propagating and Planting Trees. 2nd Edition, Agromisa Foundation, Wageningen, 15-53.
[42] Hartmann, H.T., Kester, D.E., Davies Jr., F.T. and Geneve, R.L. (2007) Plant Propagation: Principles and Practices. 7th Edition, Prentice-Hall Inc., New Delhi, p 293-603.
[43] Acquoah, G. (2004) Horticulture: Principles and Practices. 2nd Edition, Prentice-Hall Press, New Delhi, 316-356.
[44] Chadha, K.L. (2009) Handbook of Horticulture. Indian Council of Agricultural Research (ICAR), New Delhi, 76-82.
[45] Jamnadass, R.H., Dawson, I.K., Franzel, S., Leakey, R.R.B., Mithofer, D., Akinnifesi, F.K. and Tchoundjeu, Z. (2011) Improving Livelihoods and Nutrition in Sub-Saharan Africa through the Promotion of Indigenous and Exotic Fruit Production in Smallholders’ Agroforestry Systems: A Review. International Forestry Review, 13, 338-354.
http://dx.doi.org/10.1505/146554811798293836
[46] Rao, V.R. and Sthapit, B.R. (2012) Tropical Fruit Tree Genetic Resources: Status and Effect of Climate Change. In: Sthapit, B., Rao, V.R. and Sthapit, S., Eds., Tropical Fruit Trees Species and Climate Change, Bioversity International, New Delhi, 97-128.
[47] Rao, N.K. (2004) Plant Genetic Resources: Advancing Conservation and Use through Biotechnology. African Journal of Biotechnology, 3, 136-145.
[48] Rathore, D.S., Srivastava, U. and Dhillon, B.S. (2005) Management of Genetic Resources of Horticultural Crops: Issues and Strategies. In: Dhillon, B.S., Tyagi, S., Saxena, S. and Randhawa, G.T., Eds., Plant Genetic Resources: Horticultural Crops, Narosa Publishers, New Delhi, 1-18.
[49] Oldfield, S. and Newton, A.C. (2012) Integrated Conservation of Tree Species by Botanic Gardens: A Reference Manual. Botanic Gardens Conservation International, Richmond, 56 p.
[50] Ahuja, M.R. and Ramawat, K.G. (2014) Biotechnology and Biodiversity. Sustainable Development and Biodiversity. Vol. 4, Springer International Publishing Switzerland.
http://www.springer.com/series/11920                                                                                          eww150109lx
[51] Engelmann, F. and Engels, J.M.M. (2002) Technologies and Strategies for ex Situ Conservation. In: Brown, A. and Jackson, M., Eds., Managing Plant Genetic Diversity, CAB International /IPGRI, Wallingford, 89-104.

Systematic Conservation Assessment for Most of the Colombian Territory as a Strategy for Effective Biodiversity Conservation

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52864#.VKtBNcnQrzE

ABSTRACT

Colombian ecosystems maintain key ecological processes that support thousands of species, including human beings. With the expansion of the country’s population, and the implementation of a government’s development plan based on an economy centred on extraction patterns, the conservation of these ecosystems is at serious risk. It is a priority to implement effective strategies that ensure the protection of the country’s biological diversity as well as the mitigation and prevention of threats and to contribute to its proper use. Colombia’s development strategies as well as its peoples’ wellbeing depend on the suitable condition of its natural assets. The identification of surrogates of conservation, the formulation of conservation goals, the prioritization of key areas and the formulation of conservation strategies based on the preservation, restoration and sustainable use of the territory and its biodiversity are proposed for 60% of the emerged land (~ 700,000 Km2). This research aims at giving proper guidelines to manage the territory and finding common points between development and biodiversity conservation, as well as to use this input for the development and implementation of a National Decision-making Support System (DSS) that will potentially have an impact on Colombia’s environmental policies and territorial planning schemes.

Cite this paper

Portocarrero-Aya, M. , Corzo, G. , Diaz-Pulido, A. , González, M. , Longo, M. , Mesa, L. , Paz, A. , Ramírez, W. and Hernández-Manrique, O. (2014) Systematic Conservation Assessment for Most of the Colombian Territory as a Strategy for Effective Biodiversity Conservation. Natural Resources, 5, 981-1006. doi: 10.4236/nr.2014.516084.

References

[1] Portocarrero-Aya, M. (2012) Conservation of the Freshwater Biodiversity in Key Areas of the Colombian Amazon. Ph.D. Thesis, University of Hull, Hull.
[2] Brechin, S.R., Wilshusen, P.R., Fortwangler, C.L. and West, P.C. (2002) Beyond the Square Wheel: Toward a More Comprehensive Understanding of Biodiversity Conservation as Social and Political Process. Society and Natural Resources, 15, 41-64.
[3] National Development Plan (2011) National Development Plan 2010-2014. Prosperity to All. Republic of Colombia.
[4] National Development Plan (2003) National Development Plan 2002-2006. To a Community State. Republic of Colombia.
[5] MADS (Ministry of Environment and Sustainable Development) (2013) National Policy for the Integral Management of Biodiversity and Its Ecosystemic Services (PNGIBSE). Republic of Colombia.
[6] Armenteras, D., Rodríguez, N., Retana, J. and Morales, M. (2010) Understanding Deforestation in Montane and Lowland Forests of the Colombian Andes. Regional Environmental Change, 11, 693-705.
http://dx.doi.org/10.1007/s10113-010-0200-y
[7] Asher, K. and Ojeda, D. (2009) Producing Nature and Making the State: Ordenamiento Territorial in the Pacific Lowlands of Colombia. Geoforum, 40, 292-302.
http://dx.doi.org/10.1016/j.geoforum.2008.09.014
[8] Read, D. (2002) Biodiversity Conservation in the Wider Caribbean Region. Review of European Community and International Environmental Law, 11, 74-8.
http://dx.doi.org/10.1111/1467-9388.00304
[9] Rodríguez Eraso, N., Armenteras-Pascual, D. and Retana Alumbreros, J. (2012) Land Use and Land Cover Change in the Colombian Andes: Dynamics and Future Scenarios. Journal of Land Use Science.
[10] TEEB (2010) The Economics of Ecosystems and Biodiversity for Local and Regional Policy Makers.
[11] Sayer, J. (2009) Can Conservation and Development Really Be Integrated? Madagascar Conservation and Development 4.
[12] Abell, R., Allan, J.D. and Lenher, B. (2007) Unlocking the Potential for Protected Areas in Conserving Freshwaters. Biological Conservation, 134, 48-63.
http://dx.doi.org/10.1016/j.biocon.2006.08.017
[13] Corzo, G., Londono-Murcia, M.C., Ramírez, W., García, H., Lasso, C.A. and Salamanca, B., Eds. (2011) Environmental Planning for Biodiversity Conservation within the Operational Areas of Ecopetrol: Magdalena Medio and Llanos Orientales of Colombia. Instituto Alexander von Humboldt y Ecopetrol S.A., Bogotá D.C., Colombia.
[14] Gaston, K.J., Pressey, R.L. and Margules, C.R. (2002) Persistence and Vulnerability: Retaining Biodiversity in the Landscape and in Protected Areas. Journal of Biosciences, 27, 361-384.
http://dx.doi.org/10.1007/BF02704966
[15] Hoyt, E. (2011) Marine Protected Areas for Whales, Dolphins and Porpoises: A World Handbook for Cetacean Habitat Conservation and Planning. 2nd Edition, Earthscan, London.
[16] Koehn, J. (2003) Riverine Aquatic Protected Areas: Protecting Species, Communities or Ecosystem Processes? In: Beumer, J.P., Grant, A. and Smith, D.C., Eds., Aquatic Protected Areas—What Works Best and How Do We Know? Proceedings of the World Congress on Aquatic Protected Areas, University of Queensland, Cairns.
[17] Margules, C.R. and Pressey, R.L. (2000) Systematic Conservation Planning. Nature, 405, 243-253.
http://dx.doi.org/10.1038/35012251
[18] MADS (Ministry of Environment and Sustainable Development), UNDP (United Nations Development Programme) (2014) Fifth National Report on Colombian Biodiversity-Convention on Biological Diversity. Bogotá, D.C., Colombia.
[19] Pittock, J., Hansen, L.J. and Abell, R. (2008) Running Dry: Freshwater Biodiversity, Protected Areas and Climate Change. Biodiversity, 9, 30-38.
http://dx.doi.org/10.1080/14888386.2008.9712905
[20] Suski, C.D. and Cooke, S.J. (2007) Conservation of Aquatic Resources through the Use of Freshwater Protected Areas: Opportunities and Challenges. Biodiversity and Conservation, 16, 2015-2029.
http://dx.doi.org/10.1007/s10531-006-9060-7
[21] Cowling, R., Pressey, R., Sims-Castley, R., Le Roux, A., Baard, E., Burgers, C. and Palmer, G. (2003) The Expert or the Algorithm?—Comparison of Priority Conservation Areas in the Cape Floristic Region Identified by Park Managers and Reserve Selection Software. Biological Conservation, 112, 147-167.
http://dx.doi.org/10.1016/S0006-3207(02)00397-X
[22] Grantham, H.S., Pressey, R.L., Wells, J.A. and Beattie, A.J. (2010) Effectiveness of Biodiversity Surrogates for Conservation Planning: Different Measures of Effectiveness Generate a Kaleidoscope of Variation. PLoS ONE, 5, e11430.
http://dx.doi.org/10.1371/journal.pone.0011430
[23] Groves, C.R. (2003) Drafting a Conservation Blueprint: A Practitioner’s Guide to Planning Biodiversity. The Nature Conservancy, Washington DC, Arlington, Virginia.
[24] Pressey, R.L., Possingham, H.P. and Margules, C.R. (1996) Optimality in Reserve Selection Algorithms: When Does It Matter and How Much? Biological Conservation, 76, 259-267.
http://dx.doi.org/10.1016/0006-3207(95)00120-4
[25] Pressey, R.L., Possingham, H.P. and Day, J.R. (1997) Effectiveness of Alternative Heuristic Algorithms for Approximating Minimum Requirements for Conservation Reserves. Biological Conservation, 80, 207-219.
http://dx.doi.org/10.1016/S0006-3207(96)00045-6
[26] Pressey, R.L., Possingham, H.P., Logan, V.S., Day, J.R. and Williams, P.H. (1999) Effects of Data Characteristics on the Results of Reserve Selection Algorithms. Journal of Biogeography, 26, 179-191.
http://dx.doi.org/10.1046/j.1365-2699.1999.00258.x
[27] Sarkar, S., Pressey, R.L., Faith, D.P., Margules, C.R., Fuller, T., Stoms, D.M., Moffett, A., Wilson, K.A., Williams, K.J., Williams, P.H. and Andelman, S. (2006) Biodiversity Conservation Planning Tools: Present Status and Challenges for the Future. Annual Review of Environment and Resources, 31, 123-159.
http://dx.doi.org/10.1146/annurev.energy.31.042606.085844
[28] Filipe, A.F., Marques, T.A., Seabra, S., Tiago, P., Ribeiro, F., Costa, L.M.D.A. and Cowx, I.G. (2004) Selection of Priority Areas for Fish Conservation in Guadiana River Basin, Iberian Peninsula. Conservation Biology, 18, 189-200.
http://dx.doi.org/10.1111/j.1523-1739.2004.00620.x
[29] Csuti, B., Polasky, S., Williams, P.H., Pressey, R.L., Camm, J.D., Kershaw, M., Kiester, A.R., Downs, B., Hamilton, R., Huso, M. and Sahr, K. (1997) A Comparison of Reserve Selection Algorithms Using Data on Terrestrial Vertebrates in Oregon. Biological Conservation, 80, 83-97.
http://dx.doi.org/10.1016/S0006-3207(96)00068-7
[30] Koleff, P. and Urquiza-Haas, T. (2011) Planning for the Conservation of the Terrestrial Biodiversity in Mexico: Challenges in a Mega-Diverse Country. National Commission for the Knowledge and Use of Biodiversity, National Commission on National Protected Areas, México.
[31] The World Bank (2014) World Development Indicators. The GINI Index.
http://data.worldbank.org/indicator/SI.POV.GINI/countries/NO?page=1&display=map
[32] Moilanen, A., Arponen, A., Stoklans, J.N. and Cabeza, M. (2005) Assessing Replacement Cost of Conservation Areas: How Does Habitat Loss Influence Priorities? Biological Conservation, 142, 575-585.
http://dx.doi.org/10.1016/j.biocon.2008.11.011
[33] Sarkar, S. and Margules, C. (2002) Operationalizing Biodiversity for Conservation Planning. Journal of Biosciences, 27, 299-308.
http://dx.doi.org/10.1007/BF02704961
[34] Kelley, C., Garson, J., Aggarwal, A. and Sarkar, S. (2002) Place Prioritization for Biodiversity Reserve Network Design: A Comparison of the SITES and ResNet Software Packages for Coverage and Efficiency. Diversity and Distributions, 8, 297-306.
http://dx.doi.org/10.1046/j.1472-4642.2002.00155.x
[35] Strecker, A. and Olden, J. (2011) Defining Conservation Priorities for Freshwater Fishes According to Taxonomic, Functional, and Phylogenetic Diversity. Ecological Applications, 21, 3002-3013.
http://dx.doi.org/10.1890/11-0599.1
[36] Warman, L. and Sinclair, A. (2000) A Systematic Method for Identifying Priority Conservation Areas Using Wildlife Habitat Relationships and Observed Locations of Rare Species. In: Hollstedt, C., Sutherland, K. and Innes, T., Eds., From Science to Management and Back: A Science Forum for Southern Interior Ecosystems of British Columbia, Southern Interior Forest Extension and Research Partnership, Kamloops, B.C., 141-144.
[37] Andrade, G.I. and Corzo, G. (2011) What and Where to Conserve? National Natural Parks of Colombia, Bogotá.
[38] Fandino-Lozano, M. and Van Wyngaarden, W. (2005) Biological Conservation Priorities for Colombia. ARCO Group, Bogotá.
[39] Lasso, C.A., Rial, A., Matallana, C., Ramirez, W. Senaris, J., Diaz-Pulido, A., Corzo, G. and Machado-Allizon, A., Eds. (2011) Biodiversity of the Orinoco River Basin. II Priority Areas for Conservation and Sustainable Use. Alexandervon Humboldt Institute for Research on Biological Resources, Ministry of Environment, Housing and Territorial Development, WWF Colombia, Omacha Foundation, Foundation La Salle of Natural Sciences and Orinoquia Studies Institute (National University of Colombia), Bogotá, Colombia.
[40] Fisher, B. and Christopher, T. (2007) Poverty and Biodiversity: Measuring the Overlap of Human Poverty and the Biodiversity Hotspots. Ecological Economics, 62, 93-101.
http://dx.doi.org/10.1016/j.ecolecon.2006.05.020
[41] Harris, N.L., Petrova, S., Stolle, F. and Brown, S. (2008) Identifying Optimal Areas for REDD Intervention: East Kalimantan, Indinesia as a Case Study. Environmental Research Letters, 3, Article ID: 035006.
http://dx.doi.org/10.1088/1748-9326/3/3/035006
[42] Morales, M., Otero, J., Van der Hammen, T., Torres, A., Cadena, C., Pedraza, C., Rodríguez, N., Franco, C., Betancourth, J.C., Olaya, E., Posada, E. and Cárdenas, L. (2007) Atlas of Paramos of Colombia. Alexandervon Humboldt Institute for Research on Biological Resources, Bogotá.
[43] Caro, M.T. and O’Doherty, G. (1999) On the Use of Surrogate Species in Conservation Biology. Conservation Biology, 13, 805-814.
http://dx.doi.org/10.1046/j.1523-1739.1999.98338.x
[44] Abell, R., Thieme, M., Dinerstein, E. and Olson, D. (2002) A Sourcebook for Conducting Biological Assessments and Developing Biodiversity Visions for Ecoregion Conservation. Volume II: Freshwater Ecoregions. World Wildlife Fund, Washington DC.
[45] CI (Conservation International) (2008) Delimitation of Key Conservation Areas (KBA) in the Colombian Portion of the Northern-Andean Corridor. Biocolombia, Conservation International, Bogota, Colombia.
[46] TNC (The Nature Conservancy) (2000) Eco-Regional Aquatic Planning. Freshwater Initiative, The Nature Conservancy.
[47] Loyola, R.D., De Oliveira, G., Diniz-Filho, J.A.F. and Lewinsohn, T.M. (2008) Conservation of Neotropical Carnivores under Different Prioritization Scenarios: Mapping Species Traits to Minimize Conservation Conflicts. Diversity and Distributions, 14, 949-960.
http://dx.doi.org/10.1111/j.1472-4642.2008.00508.x
[48] Coppolillo, P., Gomez, H., Maisels, F. and Wallace, R. (2003) Selection Criteria for Suites of Landscape Species as a Basis for Site-Based Conservation. Biological Conservation, 115, 419-430.
http://dx.doi.org/10.1016/S0006-3207(03)00159-9
[49] Myers, N., Mittermeier, R.A., Mittermeier, C.G., da Fonseca, G.A.B. and Ken, J. (2000) Biodiversity Hotspots for Conservation Priorities. Nature, 403, 853-858.
http://dx.doi.org/10.1038/35002501
[50] Portocarrero-Aya, M., Hernández-Manrique, O.L. and Corzo, G. (in press) Probability of Biodiversity Collapse in Some Colombian Socio-Ecosystems. In: von Humboldt, A., Biodiversity 2014 (in press), Institute for Research on Biological Resources, Bogotá, Colombia.
[51] CBD (Convention on Biological Diversity) (2011) Strategic Plan for Biodiversity 2011-2020, Including Aichi Biodiversity Targets.
https://www.cbd.int/sp/
[52] Pressey, R.L., Cabeza, M., Watts, M.E., Cowling, R.M. and Wilson, K.A. (2007) Conservation Planning in a Changing World. Trends in Ecology Evolution, 22, 583-592.
http://dx.doi.org/10.1016/j.tree.2007.10.001
[53] Tear, T.H., Karieva, P., Angermeier, P.L., Comer, P., Czech, B., Kautz, R., Landon, L., Mehlman, D., Murphy, K., Ruckelshaus, M., Scott, J.M. and Wilhere, G. (2005) How Much Is Enough? The Recurrent Problem of Setting Measurable Objectives in Conservation. Bioscience, 55, 835-849.
http://dx.doi.org/10.1641/0006-3568(2005)055%5B0835:HMIETR%5D2.0.CO;2
[54] Etter, A. (1991) Introduction to Landscape Ecology: An Integrative Framework for Rural Sampling. Geographic Institute Agustín Codazzi, IGAC, Bogotá, Colombia.
[55] MAVDT (Ministry of Environment and Sustainable Development) (2010) National Plan of Restoration. Ecological Restoration, Rehabilitation and Recovery of Disturbed Areas. Ministry of Environment and Sustainable Development, Bogotá, Colombia.
[56] National Research Council (2004) Valuing Ecosystem Services: Toward Better Environmental Decision-Making. Committee on Assessing and Valuing the Services of Aquatic and Related Terrestrial Ecosystems. The National Academies Press, Washington DC.
[57] Kaimowitz, D. and Sheil, D. (2007) Conserving What and for Whom? Why Conservation Should Help Meet Basic Human Needs in the Tropics. Biotropica, 39, 567-574.
http://dx.doi.org/10.1111/j.1744-7429.2007.00332.x
[58] Silva, M. (2005) The Brazilian Protected Areas Program. Conservation Biology, 19, 608-611.
http://dx.doi.org/10.1111/j.1523-1739.2005.00707.x
[59] Rodrigues, A.S., Cerdeira, J.O. and Gaston, K.J. (2000) Flexibility, Efficiency, and Accountability: Adapting Reserve Selection Algorithms to More Complex Conservation Problems. Ecography, 23, 565-574.
http://dx.doi.org/10.1034/j.1600-0587.2000.230507.x
[60] Davis, F.W., Stoms, D.M., Costello, C.J. and Machado, E.A. (2003) A Framework for Setting Land Conservation Priorities Using Multi-Criteria Scoring and an Optimal Fund Allocation Strategy. University of California, Santa Barbara, National Center for Ecological Analysis and Synthesis, Report to The Resources Agency of California.
[61] Almeida, P., Cortés, K., Menéndez, P., Bauz, E., Rodríguez, M., Toaza, G., álvarez, U., Pinos, G., Yumiseva, L.S.C. and Lara, M. (2003) Identification of Priority Areas for Conservation in Five Eco-Regions of Latin America, GEF/ 1010-00-14.
[62] Phillips, S.J. and Dudík, M. (2008) Modelling of Species Distributions with Maxent: New Extensions and a Comprehensive Evaluation. Ecography, 31, 161-175.
http://dx.doi.org/10.1111/j.0906-7590.2008.5203.x
[63] Hoffmann, M., Brooks, T.M., da Fonseca, G.A.B., Gascon, C., Hawkins, A.F.A., James, R.E., Langhammer, P., Mittermeier, R.A., Pilgrim, J.D., Rodrigues, A.S.L. and Silva, J.M.C.S. (2008) Conservation Planning and the IUCN Red List. Endangered Species Research, 6, 113-125.
[64] Leathwick, J.R., Moilanen, A., Ferrier, S. and Julian, K. (2010) Complementarity-Based Conservation Prioritization Using a Community Classification, and Its Application to Riverine Ecosystems. Biological Conservation, 143, 984-991.
http://dx.doi.org/10.1016/j.biocon.2010.01.012
[65] Warman, L.D., Sinclair, A.R.E., Scudder, G.G.E., Klinkenberg, B. and Pressey, R.L. (2004) Sensitivity of Systematic Reserve Selection to Decisions about Scale, Biological Data, and Targets: Case Study from Southern British Columbia. Conservation Biology, 18, 655-666.
http://dx.doi.org/10.1111/j.1523-1739.2004.00538.x
[66] MDG (Millennium Development Goals) (2005) A Practical Plan to Achieve the Millennium Development Goals. United Nation Development Program.
http://www.unmillenniumproject.org/reports/fullreport.htm
[67] Nori, J., Lescano, J.N., Illoldi-Rangel, P., Frutos, N., Cabrera, M.R. and Leynaud, G.C. (2013) The Conflict between Agricultural Expansion and Priority Conservation Areas: Making the Right Decisions before It Is Too Late. Biological Conservation, 159, 507-513.
[68] Butchart, S., Walpole, M. and Collen, B. (2010) Global Biodiversity: Indicators of Recent Declines. Science, 328, 1164-1168.
http://dx.doi.org/10.1126/science.1187512
[69] Ecopetrol (2012) Reporte Integrado de Gestión Sostenible 2011.
http://www.ecopetrol.com.co/especiales/ReporteGestion2012/pdf/ri2011.pdf
[70] SER (Society for Ecological Restoration International Science & Policy Writing Group) (2006) The SER International Primer on Ecological Restoration. Society for Ecological Restoration International, Tucson.
http://www.ser.org
[71] De Ville, B. (2007) Decision Trees for Business Intelligence and Data Mining: Using SAS Enterprise Miner. SASPUB. USA.
[72] Murthy, S. and Salzberg, S. (1995) Decision Tree Induction: How Effective Is the Greedy Heuristic? KDD-95 Proceedings, 222-227.
[73] Pressey, R.L. and Cowling, R.M. (2001) Reserve Selection Algorithms and the Real World. Conservation Biology, 15, 275-277.
http://dx.doi.org/10.1046/j.1523-1739.2001.99541.x
[74] Druzdzel, M.J. and Flynn, R.R. (2002) Decision Support Systems. In: Kent, A., Ed., Encyclopedia of Library and Information Science, 2nd Edition, Marcel Dekker, Inc., New York.
[75] Carrizosa-Umana, J. (2014) Complex Colombia. Boptanical Garden of Bogotá José CelestinoMutis. Alexander von Humboldt Institute for Research on Biological Resources, Bogotá, D.C., Colombia.
[76] Rodriguez, J.P., Rodriguez-Clark, K., Baillie, J.E.M., Ash, N., Benson, J., Boucher, T., Brown, C., Burgess, N.D., Collen, B., Jennings, M., Keith, D.A., Nicholson, E., Revenga, C., Reyers, B., Rouget, M., Smith, T., Spalding, M., Taber, A., Walpole, M., Zager, I. and Zamin, T. (2011) Definition of IUCN Categories for Threatened Ecosystems. Conservation Biology, 25, 21-29.
[77] EPA (Environmental Protection Agency) (1992) Framework for Ecological Risk Assessment. Risk Assessment Forum U.S. Environmental Protection Agency, Washington DC.
[78] Hernández-Manrique, O.L. and Hurtado, A. (2012) Ecology Functionality Analysis. In: Hurtado, A., Ed., Analysis of the Diversity, Distribution and State of Threat of Five Taxonomical Groups, Conservation Landscape Integrity and Functionality in Los Katíos, Final Reports, Ecotropico-WWF Colombia.
[79] IDEAM (Institute of Hydrology, Meteorology and Environmental Studies) (2010) Second Communication on Climate Change-United National Convention. Republic of Colombia.
[80] Wilson, K., Pressey, R.L., Newton, A., Burgman, M., Possinham, H. and Weston, C. (2005) Measuring and Incorporating Vulnerability into Conservation Planning. Environmental Management, 35, 527-543.
http://dx.doi.org/10.1007/s00267-004-0095-9                                                                           eww150105lx

Can the Iberian Floristic Diversity Withstand Near-Future Climate Change?

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52760#.VKNQOMnQrzE

ABSTRACT

We assess how effectively the current network of protected areas (PAs) across the Iberian Peninsula will conserve plant diversity under near-future (2020) climate change. We computed 3267 MAXENT environmental niche models (ENMs) at 1-km spatial resolution for known Iberian plant species under two climate scenarios (1950-2000 baseline & 2020). To predict near-future species distributions across the network of Iberian and Balearics PAs, we combined projections of species’ ENMs with simulations of propagule dispersal by using six scenarios of annual dispersal rates (no dispersal, 0.1 km, 0.5 km, 1 km, 2 km and unlimited). Mined PA grid cell values for each species were then analyzed. We forecast 3% overall floristic diversity richness loss by 2020. The habitat of regionally extant species will contract on average by 13.14%. Niche movement exceeds 1 km per annum for 30% of extant species. While the southerly range margin of northern plant species retracts northward at 8.9 km per decade, overall niche movement is more easterly and westerly than northerly. There is little expansion of the northern range margin of southern plant species even under unlimited dispersal. Regardless of propagule dispersal rate, altitudinal niche movement of +25 m per decade is strongest for northern species. Pyrenees flora is most vulnerable to near-future climate change with many northern plant species responding by shifting their range westerly and easterly rather than northerly. Northern humid habitats will be particularly vulnerable to near-future climate change. Andalusian National Parks will become important southern biodiversity refuges. With limited human intervention (particularly in the Pyrenees), we conclude that floristic diversity in Iberian PAs should withstand near-future climate change.

Cite this paper

Heap, M. , Culham, A. , Lenoir, J. and Gavilán, R. (2014) Can the Iberian Floristic Diversity Withstand Near-Future Climate Change?. Open Journal of Ecology, 4, 1089-1101. doi: 10.4236/oje.2014.417089.

References

[1] Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. and Thomas, C.D. (2011) Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333, 1024-1026.
http://dx.doi.org/10.1126/science.1206432
[2] Parmesan, C. and Yohe, G. (2003) A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421, 37-42. http://dx.doi.org/10.1038/nature01286
[3] Lenoir, J., Gégout, J.C., Guisan, A., Vittoz, P., Wohlgemuth, T., et al. (2010) Going against the Flow: Potential Mechanisms for Unexpected Downslope Range Shifts in a Warming Climate. Ecography, 33, 295-303.
http://dx.doi.org/10.1111/j.1600-0587.2010.06279.x
[4] Crimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T. and Mynsberge, A.R. (2011) Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species’ Optimum Elevations. Science, 331, 324-327.
http://dx.doi.org/10.1126/science.1199040
[5] VanDerWal, J., Murphy, H.T., Kutt, A.S., Perkins, G.C., Bateman, B.L., et al. (2013) Focus on Poleward Shifts in Species’ Distribution Underestimates the Fingerprint of Climate Change. Nature Climate Change, 3, 239-243.
http://dx.doi.org/10.1038/nclimate1688
[6] Cannone, N. and Pignatti, S. (2014) Ecological Responses of Plant Species and Communities to Climate Warming: Upward Shift or Range Filling Processes? Climatic Change, 123, 201-214.
http://dx.doi.org/10.1007/s10584-014-1065-8
[7] Lenoir, J. and Svenning, J.C. (2014) Climate-Related Range Shifts—A Global Multidimensional Synthesis and New Research Directions. Ecography. http://dx.doi.org/10.1111/ecog.00967
[8] Groom, Q.J. (2013) Some Poleward Movement of British Native Vascular Plants Is Occurring, but the Fingerprint of Climate Change Is Not Evident. PeerJ, 1, e77. http://dx.doi.org/10.7717/peerj.77
[9] Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C. and Longino, J.T. (2008) Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science, 322, 258-261.
http://dx.doi.org/10.1126/science.1162547
[10] Feeley, K.J. and Silman, M.R. (2010) Biotic Attrition from Tropical Forests Correcting for Truncated Temperature Niches. Global Change Biology, 16, 1830-1836. http://dx.doi.org/10.1111/j.1365-2486.2009.02085.x
[11] Fernández-González, F., Loidi, J., Moreno, J.C., Del Arco, M., Férnández-Cancio, A., et al. (2005) Impactos sobre la biodiversidad vegetal. In: Moreno, J.M., Ed., Evaluación preliminar de los impactos en Espana por efecto del cambio climático, Ministerio de MedioAmbiente, Madrid, 183-248.
[12] Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. and Thuiller, W. (2011) Climate Change Threatens European Conservation Areas. Ecology Letters, 14, 484-492.
http://dx.doi.org/10.1111/j.1461-0248.2011.01610.x
[13] Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T. and Prentice, I.C. (2005) Climate Change Threats to Plant Diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245-8250.
http://dx.doi.org/10.1073/pnas.0409902102
[14] Lenoir, J., Graae, B.J., Aarrestad, P.A., Alsos, I.G., Armbruster, W.S., Austrheim, G., et al. (2013) Local Temperatures Inferred from Plant Communities Suggest Strong Spatial Buffering of Climate Warming across Northern Europe. Global Change Biology, 19, 1470-1481. http://dx.doi.org/10.1111/gcb.12129
[15] Willis, K.J. and Bhagwat, S.A. (2009) Biodiversity and Climate Change. Science, 326, 806-807.
http://dx.doi.org/10.1126/science.1178838
[16] Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., et al. (2012) Extinction Debt of High-Mountain Plants under Twenty-First-Century Climate Change. Nature Climate Change, 2, 619-622.
http://dx.doi.org/10.1038/nclimate1514
[17] Heap, M.J., Culham, A. and Osborne, J. (2013) The Benefits of a Compute Cluster Approach to High Spatial Resolution Biodiversity Richness Modelling: Projecting the Impact of Climate Change on Mediterranean Flora. The International Journal of Climate Change: Impacts and Responses, 4, 115-218.
[18] Thuiller, W., Albert, C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan, A., et al. (2008) Predicting Global Change Impacts on Plant Species’ Distributions: Future Challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137-152. http://dx.doi.org/10.1016/j.ppees.2007.09.004
[19] Yesson, C. and Culham, A. (2006) A Phyloclimatic Study of Cyclamen. BMC Evolutionary Biology, 6, 72.
http://dx.doi.org/10.1186/1471-2148-6-72
[20] Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
[21] Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. (2005) Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25, 1965-1978.
http://dx.doi.org/10.1002/joc.1276
[22] FAO and ISRIC (2010) Harmonized World Soil Database (Version 1.1). FAO, Rome and IIASA, Laxenburg.
[23] Hansen, M., DeFries, R., Townshend, J.R.G. and Sohlberg, R. (1998) UMD Global Land Cover Classification, 1 Kilometer, 1.0. Department of Geography, University of Maryland, College Park, 1981-1994.
[24] Pliscoff, P., Luebert, F., Hilger, H.H. and Guisan, A. (2014) Effects of Alternative Sets of Climatic Predictors on Species Distribution Models and Associated Estimates of Extinction Risk: A Test with Plants in an Arid Environment. Ecological Modelling, 288, 166-177.
http://dx.doi.org/10.1016/j.ecolmodel.2014.06.003
[25] Ramirez-Villegas, J. and Jarvis, A. (2010) Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis. Working Paper No. 1, Policy Analysis 1, 1-18.
[26] Thiers, B. (2011) Continuously Updated. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium.
http://sciweb.nybg.org/science2/IndexHerbariorum.asp
http://sweetgum.nybg.org/ih/
[27] Yesson, C., Brewer, P.W., Sutton, T., Caithness, N., Pahwa, J.S., Burgess, M. and Culham, A. (2007) How Global Is the Global Biodiversity Information Facility? PLoS ONE, 2, e1124.
http://dx.doi.org/10.1371/journal.pone.0001124
[28] Heap, M.J. and Culham, A. (2010) Automated Pre-Processing Strategies for Species Occurrence Data Used in Biodiversity Modelling. In: Setchi, R., Jordanov, I., Howlett, R.J. and Jain, L.C., Eds., Knowledge-Based and Intelligent Information and Engineering Systems, Springer Berlin Heidelberg, Berlin, 517-526.
http://dx.doi.org/10.1007/978-3-642-15384-6_55
[29] Castroviejo, S. (1986) Flora iberica: Plantas vasculares de la Península Ibérica e Islas Baleares.
[30] Casas, C. (1998) The Anthocerotae and Hepaticae of Spain and Balearic Islands: A Preliminary Checklist. Orsis, 13, 17-26.
[31] Rivas-Martínez, S., Diaz, T.E., Fernandez-Gonzalez, F., Izco, J., Loidi, J., Lous?, M. and Penas, á. (2002) Vascular Plant Communities of Spain and Portugal: Addenda to the Syntaxonomical Checklist of 2001. Itinera Geobotanica, 15, 5-922.
[32] Euro+Med (2006) Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity.
http://ww2.bgbm.org/EuroPlusMed/
[33] The Plant List (2010) Version 1. http://www.theplantlist.org/
[34] Ros, R.M., Mazimpaka, V., Abou-Salama, U., Aleffi, M., Blockeel, T.L., et al. (2013) Mosses of the Mediterranean, an Annotated Checklist. Cryptogamie, Bryologie, 34, 99-283.
http://dx.doi.org/10.7872/cryb.v34.iss2.2013.99
[35] Roskov, Y., Kunze, T., Paglinawan, L., Orrell, T., Nicolson, D., et al. (2013) Species 2000 & ITIS Catalogue of Life. 2013 Annual Checklist, Species 2013.
[36] Encyclopedia of Life (2014) http://www.eol.org.
[37] Pittman, S.J. and Brown, K.A. (2011) Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes. PloS ONE, 6, e20583. http://dx.doi.org/10.1371/journal.pone.0020583
[38] Morin, X. and Thuiller, W. (2009) Comparing Niche-and Process-Based Models to Reduce Prediction Uncertainty in Species Range Shifts under Climate Change. Ecology, 90, 1301-1313. http://dx.doi.org/10.1890/08-0134.1
[39] Brommer, J.E. (2004) The Range Margins of Northern Birds Shift Polewards. Annales Zoologici Fennici, 41, 391-397.
[40] Heubes, J., Schmidt, M., Stuch, B., García Márquez, J.R., Wittig, R., Zizka, G., et al. (2013) The Projected Impact of Climate and Land Use Change on Plant Diversity: An Example from West Africa. Journal of Arid Environments, 96, 48-54. http://dx.doi.org/10.1016/j.jaridenv.2013.04.008
[41] Gavilán, R.G. (2005) The Use of Climatic Parameters and Indices in Vegetation Distribution. A Case Study in the Spanish Sistema Central. International Journal of Biometeorology, 50, 111-120.
http://dx.doi.org/10.1007/s00484-005-0271-5
[42] Hampe, A. and Jump, A.S. (2011) Climate Relicts: Past, Present, Future. Annual Review of Ecology, Evolution, and Systematics, 42, 313-333. http://dx.doi.org/10.1146/annurev-ecolsys-102710-145015
[43] Thomas, C.D. (2011) Translocation of Species, Climate Change, and the End of Trying to Recreate Past Ecological Communities. Trends in Ecology & Evolution, 26, 216-221. http://dx.doi.org/10.1016/j.tree.2011.02.006
[44] Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., et al. (2012) Recent Plant Diversity Changes on Europe’s Mountain Summits. Science, 336, 353-355. http://dx.doi.org/10.1126/science.1219033
[45] Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Alonso, J.L.B., et al. (2012) Continent-Wide Response of Mountain Vegetation to Climate Change. Nature Climate Change, 2, 111-115.
http://dx.doi.org/10.1038/nclimate1329
[46] Alagador, D., Cerdeira, J.O. and Araújo, M.B. (2014) Shifting Protected Areas: Scheduling Spatial Priorities under Climate Change. Journal of Applied Ecology, 51, 703-713.
http://dx.doi.org/10.1111/1365-2664.12230
[47] Dobrowski, S.Z. (2011) A Climatic Basis for Microrefugia: The Influence of Terrain on Climate. Global Change Biology, 17, 1022-1035. http://dx.doi.org/10.1111/j.1365-2486.2010.02263.x
[48] Warren, R., Van DerWal, J., Price, J., Welbergen, J.A., Atkinson, I., Ramirez-Villegas, J., et al. (2013) Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss. Nature Climate Change, 3, 678-682.
http://dx.doi.org/10.1038/nclimate1887
[49] Dlugokencky, E. and Tans, P. (2014) NOAA/ESRL. http://www.esrl.noaa.gov/gmd/ccgg/trends/        eww141231lx

Can the Iberian Floristic Diversity Withstand Near-Future Climate Change?

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52760#.VKISbcCAM4

ABSTRACT

We assess how effectively the current network of protected areas (PAs) across the Iberian Peninsula will conserve plant diversity under near-future (2020) climate change. We computed 3267 MAXENT environmental niche models (ENMs) at 1-km spatial resolution for known Iberian plant species under two climate scenarios (1950-2000 baseline & 2020). To predict near-future species distributions across the network of Iberian and Balearics PAs, we combined projections of species’ ENMs with simulations of propagule dispersal by using six scenarios of annual dispersal rates (no dispersal, 0.1 km, 0.5 km, 1 km, 2 km and unlimited). Mined PA grid cell values for each species were then analyzed. We forecast 3% overall floristic diversity richness loss by 2020. The habitat of regionally extant species will contract on average by 13.14%. Niche movement exceeds 1 km per annum for 30% of extant species. While the southerly range margin of northern plant species retracts northward at 8.9 km per decade, overall niche movement is more easterly and westerly than northerly. There is little expansion of the northern range margin of southern plant species even under unlimited dispersal. Regardless of propagule dispersal rate, altitudinal niche movement of +25 m per decade is strongest for northern species. Pyrenees flora is most vulnerable to near-future climate change with many northern plant species responding by shifting their range westerly and easterly rather than northerly. Northern humid habitats will be particularly vulnerable to near-future climate change. Andalusian National Parks will become important southern biodiversity refuges. With limited human intervention (particularly in the Pyrenees), we conclude that floristic diversity in Iberian PAs should withstand near-future climate change.

Cite this paper

Heap, M. , Culham, A. , Lenoir, J. and Gavilán, R. (2014) Can the Iberian Floristic Diversity Withstand Near-Future Climate Change?. Open Journal of Ecology, 4, 1089-1101. doi: 10.4236/oje.2015.417089.

References

[1] Chen, I.C., Hill, J.K., Ohlemüller, R., Roy, D.B. and Thomas, C.D. (2011) Rapid Range Shifts of Species Associated with High Levels of Climate Warming. Science, 333, 1024-1026.
http://dx.doi.org/10.1126/science.1206432
[2] Parmesan, C. and Yohe, G. (2003) A Globally Coherent Fingerprint of Climate Change Impacts across Natural Systems. Nature, 421, 37-42. http://dx.doi.org/10.1038/nature01286
[3] Lenoir, J., Gégout, J.C., Guisan, A., Vittoz, P., Wohlgemuth, T., et al. (2010) Going against the Flow: Potential Mechanisms for Unexpected Downslope Range Shifts in a Warming Climate. Ecography, 33, 295-303.
http://dx.doi.org/10.1111/j.1600-0587.2010.06279.x
[4] Crimmins, S.M., Dobrowski, S.Z., Greenberg, J.A., Abatzoglou, J.T. and Mynsberge, A.R. (2011) Changes in Climatic Water Balance Drive Downhill Shifts in Plant Species’ Optimum Elevations. Science, 331, 324-327.
http://dx.doi.org/10.1126/science.1199040
[5] VanDerWal, J., Murphy, H.T., Kutt, A.S., Perkins, G.C., Bateman, B.L., et al. (2013) Focus on Poleward Shifts in Species’ Distribution Underestimates the Fingerprint of Climate Change. Nature Climate Change, 3, 239-243.
http://dx.doi.org/10.1038/nclimate1688
[6] Cannone, N. and Pignatti, S. (2014) Ecological Responses of Plant Species and Communities to Climate Warming: Upward Shift or Range Filling Processes? Climatic Change, 123, 201-214.
http://dx.doi.org/10.1007/s10584-014-1065-8
[7] Lenoir, J. and Svenning, J.C. (2014) Climate-Related Range Shifts—A Global Multidimensional Synthesis and New Research Directions. Ecography. http://dx.doi.org/10.1111/ecog.00967
[8] Groom, Q.J. (2013) Some Poleward Movement of British Native Vascular Plants Is Occurring, but the Fingerprint of Climate Change Is Not Evident. PeerJ, 1, e77. http://dx.doi.org/10.7717/peerj.77
[9] Colwell, R.K., Brehm, G., Cardelús, C.L., Gilman, A.C. and Longino, J.T. (2008) Global Warming, Elevational Range Shifts, and Lowland Biotic Attrition in the Wet Tropics. Science, 322, 258-261.
http://dx.doi.org/10.1126/science.1162547
[10] Feeley, K.J. and Silman, M.R. (2010) Biotic Attrition from Tropical Forests Correcting for Truncated Temperature Niches. Global Change Biology, 16, 1830-1836. http://dx.doi.org/10.1111/j.1365-2486.2009.02085.x
[11] Fernández-González, F., Loidi, J., Moreno, J.C., Del Arco, M., Férnández-Cancio, A., et al. (2005) Impactos sobre la biodiversidad vegetal. In: Moreno, J.M., Ed., Evaluación preliminar de los impactos en Espana por efecto del cambio climático, Ministerio de MedioAmbiente, Madrid, 183-248.
[12] Araújo, M.B., Alagador, D., Cabeza, M., Nogués-Bravo, D. and Thuiller, W. (2011) Climate Change Threatens European Conservation Areas. Ecology Letters, 14, 484-492.
http://dx.doi.org/10.1111/j.1461-0248.2011.01610.x
[13] Thuiller, W., Lavorel, S., Araújo, M.B., Sykes, M.T. and Prentice, I.C. (2005) Climate Change Threats to Plant Diversity in Europe. Proceedings of the National Academy of Sciences of the United States of America, 102, 8245-8250.
http://dx.doi.org/10.1073/pnas.0409902102
[14] Lenoir, J., Graae, B.J., Aarrestad, P.A., Alsos, I.G., Armbruster, W.S., Austrheim, G., et al. (2013) Local Temperatures Inferred from Plant Communities Suggest Strong Spatial Buffering of Climate Warming across Northern Europe. Global Change Biology, 19, 1470-1481. http://dx.doi.org/10.1111/gcb.12129
[15] Willis, K.J. and Bhagwat, S.A. (2009) Biodiversity and Climate Change. Science, 326, 806-807.
http://dx.doi.org/10.1126/science.1178838
[16] Dullinger, S., Gattringer, A., Thuiller, W., Moser, D., Zimmermann, N.E., Guisan, A., et al. (2012) Extinction Debt of High-Mountain Plants under Twenty-First-Century Climate Change. Nature Climate Change, 2, 619-622.
http://dx.doi.org/10.1038/nclimate1514
[17] Heap, M.J., Culham, A. and Osborne, J. (2013) The Benefits of a Compute Cluster Approach to High Spatial Resolution Biodiversity Richness Modelling: Projecting the Impact of Climate Change on Mediterranean Flora. The International Journal of Climate Change: Impacts and Responses, 4, 115-218.
[18] Thuiller, W., Albert, C., Araújo, M.B., Berry, P.M., Cabeza, M., Guisan, A., et al. (2008) Predicting Global Change Impacts on Plant Species’ Distributions: Future Challenges. Perspectives in Plant Ecology, Evolution and Systematics, 9, 137-152. http://dx.doi.org/10.1016/j.ppees.2007.09.004
[19] Yesson, C. and Culham, A. (2006) A Phyloclimatic Study of Cyclamen. BMC Evolutionary Biology, 6, 72.
http://dx.doi.org/10.1186/1471-2148-6-72
[20] Phillips, S.J., Anderson, R.P. and Schapire, R.E. (2006) Maximum Entropy Modeling of Species Geographic Distributions. Ecological Modelling, 190, 231-259. http://dx.doi.org/10.1016/j.ecolmodel.2005.03.026
[21] Hijmans, R.J., Cameron, S.E., Parra, J.L., Jones, P.G. and Jarvis, A. (2005) Very High Resolution Interpolated Climate Surfaces for Global Land Areas. International Journal of Climatology, 25, 1965-1978.
http://dx.doi.org/10.1002/joc.1276
[22] FAO and ISRIC (2010) Harmonized World Soil Database (Version 1.1). FAO, Rome and IIASA, Laxenburg.
[23] Hansen, M., DeFries, R., Townshend, J.R.G. and Sohlberg, R. (1998) UMD Global Land Cover Classification, 1 Kilometer, 1.0. Department of Geography, University of Maryland, College Park, 1981-1994.
[24] Pliscoff, P., Luebert, F., Hilger, H.H. and Guisan, A. (2014) Effects of Alternative Sets of Climatic Predictors on Species Distribution Models and Associated Estimates of Extinction Risk: A Test with Plants in an Arid Environment. Ecological Modelling, 288, 166-177.
http://dx.doi.org/10.1016/j.ecolmodel.2014.06.003
[25] Ramirez-Villegas, J. and Jarvis, A. (2010) Downscaling Global Circulation Model Outputs: The Delta Method Decision and Policy Analysis. Working Paper No. 1, Policy Analysis 1, 1-18.
[26] Thiers, B. (2011) Continuously Updated. Index Herbariorum: A Global Directory of Public Herbaria and Associated Staff. New York Botanical Garden’s Virtual Herbarium.
http://sciweb.nybg.org/science2/IndexHerbariorum.asp
http://sweetgum.nybg.org/ih/
[27] Yesson, C., Brewer, P.W., Sutton, T., Caithness, N., Pahwa, J.S., Burgess, M. and Culham, A. (2007) How Global Is the Global Biodiversity Information Facility? PLoS ONE, 2, e1124.
http://dx.doi.org/10.1371/journal.pone.0001124
[28] Heap, M.J. and Culham, A. (2010) Automated Pre-Processing Strategies for Species Occurrence Data Used in Biodiversity Modelling. In: Setchi, R., Jordanov, I., Howlett, R.J. and Jain, L.C., Eds., Knowledge-Based and Intelligent Information and Engineering Systems, Springer Berlin Heidelberg, Berlin, 517-526.
http://dx.doi.org/10.1007/978-3-642-15384-6_55
[29] Castroviejo, S. (1986) Flora iberica: Plantas vasculares de la Península Ibérica e Islas Baleares.
[30] Casas, C. (1998) The Anthocerotae and Hepaticae of Spain and Balearic Islands: A Preliminary Checklist. Orsis, 13, 17-26.
[31] Rivas-Martínez, S., Diaz, T.E., Fernandez-Gonzalez, F., Izco, J., Loidi, J., Lous?, M. and Penas, á. (2002) Vascular Plant Communities of Spain and Portugal: Addenda to the Syntaxonomical Checklist of 2001. Itinera Geobotanica, 15, 5-922.
[32] Euro+Med (2006) Euro+Med PlantBase—The Information Resource for Euro-Mediterranean Plant Diversity.
http://ww2.bgbm.org/EuroPlusMed/
[33] The Plant List (2010) Version 1. http://www.theplantlist.org/
[34] Ros, R.M., Mazimpaka, V., Abou-Salama, U., Aleffi, M., Blockeel, T.L., et al. (2013) Mosses of the Mediterranean, an Annotated Checklist. Cryptogamie, Bryologie, 34, 99-283.
http://dx.doi.org/10.7872/cryb.v34.iss2.2013.99
[35] Roskov, Y., Kunze, T., Paglinawan, L., Orrell, T., Nicolson, D., et al. (2013) Species 2000 & ITIS Catalogue of Life. 2013 Annual Checklist, Species 2013.
[36] Encyclopedia of Life (2014) http://www.eol.org.
[37] Pittman, S.J. and Brown, K.A. (2011) Multi-Scale Approach for Predicting Fish Species Distributions across Coral Reef Seascapes. PloS ONE, 6, e20583. http://dx.doi.org/10.1371/journal.pone.0020583
[38] Morin, X. and Thuiller, W. (2009) Comparing Niche-and Process-Based Models to Reduce Prediction Uncertainty in Species Range Shifts under Climate Change. Ecology, 90, 1301-1313. http://dx.doi.org/10.1890/08-0134.1
[39] Brommer, J.E. (2004) The Range Margins of Northern Birds Shift Polewards. Annales Zoologici Fennici, 41, 391-397.
[40] Heubes, J., Schmidt, M., Stuch, B., García Márquez, J.R., Wittig, R., Zizka, G., et al. (2013) The Projected Impact of Climate and Land Use Change on Plant Diversity: An Example from West Africa. Journal of Arid Environments, 96, 48-54. http://dx.doi.org/10.1016/j.jaridenv.2013.04.008
[41] Gavilán, R.G. (2005) The Use of Climatic Parameters and Indices in Vegetation Distribution. A Case Study in the Spanish Sistema Central. International Journal of Biometeorology, 50, 111-120.
http://dx.doi.org/10.1007/s00484-005-0271-5
[42] Hampe, A. and Jump, A.S. (2011) Climate Relicts: Past, Present, Future. Annual Review of Ecology, Evolution, and Systematics, 42, 313-333. http://dx.doi.org/10.1146/annurev-ecolsys-102710-145015
[43] Thomas, C.D. (2011) Translocation of Species, Climate Change, and the End of Trying to Recreate Past Ecological Communities. Trends in Ecology & Evolution, 26, 216-221. http://dx.doi.org/10.1016/j.tree.2011.02.006
[44] Pauli, H., Gottfried, M., Dullinger, S., Abdaladze, O., Akhalkatsi, M., Alonso, J.L.B., et al. (2012) Recent Plant Diversity Changes on Europe’s Mountain Summits. Science, 336, 353-355. http://dx.doi.org/10.1126/science.1219033
[45] Gottfried, M., Pauli, H., Futschik, A., Akhalkatsi, M., Barancok, P., Alonso, J.L.B., et al. (2012) Continent-Wide Response of Mountain Vegetation to Climate Change. Nature Climate Change, 2, 111-115.
http://dx.doi.org/10.1038/nclimate1329
[46] Alagador, D., Cerdeira, J.O. and Araújo, M.B. (2014) Shifting Protected Areas: Scheduling Spatial Priorities under Climate Change. Journal of Applied Ecology, 51, 703-713.
http://dx.doi.org/10.1111/1365-2664.12230
[47] Dobrowski, S.Z. (2011) A Climatic Basis for Microrefugia: The Influence of Terrain on Climate. Global Change Biology, 17, 1022-1035. http://dx.doi.org/10.1111/j.1365-2486.2010.02263.x
[48] Warren, R., Van DerWal, J., Price, J., Welbergen, J.A., Atkinson, I., Ramirez-Villegas, J., et al. (2013) Quantifying the Benefit of Early Climate Change Mitigation in Avoiding Biodiversity Loss. Nature Climate Change, 3, 678-682.
http://dx.doi.org/10.1038/nclimate1887
[49] Dlugokencky, E. and Tans, P. (2014) NOAA/ESRL. http://www.esrl.noaa.gov/gmd/ccgg/trends/    eww141230lx

Rural Livelihoods Vulnerabilities and Commercial Bushmeat Hunting Challenges in Cross River National Park, Nigeria

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50662#.VEhWWVfHRK0

ABSTRACT

Biodiversity conservation in parks and protected areas in Africa in general and especially in Nigeria is seriously threatened by the explosion of commercial bushmeat hunting activities in buffer zone communities. Several fauna species are becoming endangered and the list of extinct species is increasing due to commercial bushmeat hunting activities. Using a combination of qualitative and quantitative research techniques, this paper assesses the livelihoods vulnerability underpinnings of commercial bushmeat hunting activities in Cross River National Park (CRNP). Results reveal that commercial bushmeat hunting activities are shaped by a vulnerability context that hinges on different elements of environmental shocks, seasonal challenges and surrounding societal trends. The paper highlights the conservation and global sustainable development implications of uncontrolled commercial bushmeat hunting practices and concludes with options on policy recommendations and future research trajectories.

Cite this paper

Enuoh, O. and Bisong, F. (2014) Rural Livelihoods Vulnerabilities and Commercial Bushmeat Hunting Challenges in Cross River National Park, Nigeria. Natural Resources, 5, 822-836. doi: 10.4236/nr.2014.513071.

References

[1] ODNRI/WWF (1989) Cross River National Park Oban Division: Plan for Developing the Park and Its Support Zone. London.
[2] Brown, N.R., Wilkie, D., Bennett, D., Tutin, E., van Tol, C.G. and Christophers, T. (2008) Conservation and Use of Wildlife-Based Resources: The Bushmeat Crisis. Technical Series No. 33, Secretariat of the Convention on Biological Diversity, Montreal, and Centre for International Forestry Research (CIFOR), Bogor, 50 p.
[3] Barnett, R. (2000) Food for Thought: The Utilization of Wild Meat in Eastern and Southern Africa. TRAFFIC East/ Southern Africa, Nairobi, 264.
[4] Murray, M. (2003) Overkill and Sustainable Use. Science, 299, 1851-1853.
http://dx.doi.org/10.1126/science.1079823
[5] Maisels, F., Kerming, E., Kermei, M., and Toh, C. (2001) The Extirpation of Large Mammals and Implications for Montane Forest Conservation: The Case of the Kilum-Ijim Forest, North-West Province, Cameroon. Oryx, 35, 322-331.
http://dx.doi.org/10.1017/S0030605300032087
[6] David, B. (1995) Wildlife and National Parks in Northern Cameroon. Bois et Forêts des Tropiques, No. 244, 43-54.
[7] Ntiamo-Baidu, Y. (1997) Can Wildlife Contribute to Food Security in Africa? FAO Conservation Guide 33. Food and Agriculture Organisation of the United Nations, Rome.
[8] Caspary, H.U. (1999) Utilisation de la faune sauvage en Cote d’Ivoire et Afrique de I’Ouest. Potentiels et contraintes pour la coopération au développement. Deutsche Gesellschaft fur Technische Zusammenarbeit (GTZ) GmbH, Eschborn.
[9] KEP (1997) Impact Assessment Study in Refugee Affected Districts of Biharamulo, Ngara and Karagwe. Kagera Environmental Project, Tanzania Agro-Industrial Services Limited, Dar es Salaam.
[10] Newing, H. (2001) Bushmeat Hunting and Management: Implications of Duiker Ecology and Interspecific Competition. Biodiversity and Conservation, 10, 99-118.
http://dx.doi.org/10.1023/A:1016671524034
[11] Carpenter, G.M., Fusari, A. and Okongo, H. (2007) Subsistence Hunting and Exploitation of Mammals in the HautOgooud Province, South Eastern Gabon. Journal of Anthropological Sciences, 85, 183-193.
[12] Bassett, T.J. (2005) Card-Carrying Hunters, Rural Poverty and Wildlife Decline in Northern Cote d’Ivoire. The Geographical Journal, 171, 71-82.
http://dx.doi.org/10.1111/j.1475-4959.2005.00147.x
[13] Redford, K.H. (1992) The Empty Forest. Bioscience, 42, 412-422.
http://dx.doi.org/10.2307/1311860
[14] Leveque, C. and Mounolou, J. (2003) Biodiversity. John Wiley and Sons Ltd., Chichester.
[15] Matthew, R., Halle, M. and Switzer, J., Eds. (2002) Conserving the Peace: Resources, Livelihoods and Security. IISD/ IUCN Publication, Gland, Switzerland.
[16] Chambers, R. and Conway, G. (1992) Sustainable Rural Livelihoods: Practical Concepts for the 21st Century. IDS Discusion Paper 296, IDS, Brighton.
[17] Mainka, S. and Trivedi, M., Eds. (2002) Links between Biodiversity Conservation, Livelihoods and Food Security: The Sustainable Use of Wild Species of Meat. Occasional Paper of the IUCN Species Survival Commission No. 24. IUCN, Gland, Switzerland and Cambridge, UK.
[18] Friedmann, Y. (2003) Bushmeat—A Southern African Issue Too. Endangered Wildlife, 43, 16-17.
[19] Chardonnet, P., des Clers, B., Fischer, J., Gerhold, R., Jori, F. and Lamarque, F. (2002) The Value of Wildlife. Scientific and Technical Review, Office of International Epizootiology, 21, 15-51.
[20] Bakarr, M.I., Fonseca, G.A.B.D., Mittermeier, R.A., Rylands, A.B. and Painemilla, K.W., Eds. (2001) Hunting and Bushmeat Utilisationin the African Rainforest: Perspectives towards a Blueprint for Conservation Action. Conservation International, Washington DC.
[21] Brown, D. and Davies, G. (2007) Bushmeat and Livelihoods: Wildlife Management and Poverty Reduction. Blackwell Publishers, Oxford.
[22] Scoones, I., Melnyk, M. and Pretty, J. (1992) The Hidden Harvest: Wild Foods and Agricultural Systems: A Literature Review and Annotated Bibliography. IIED, SIDA and WWF, London.
[23] McShane, T.O. (2003) Protected Areas and Poverty—The Linkages and How to Address Them. Policy Matters (IUCN Commission on Environmental, Economic and Social Policy), No. 12, 52-53.
[24] Norton-Griffiths, M. and Southey, C. (1995) The Opportunity Costs of Biodiversity Conservation in Kenya. Ecological Economics, 12, 125-139.
http://dx.doi.org/10.1016/0921-8009(94)00041-S
[25] Fussel, H. (2007) Vulnerability: A Generally Applicable Conceptual Framework for Climate Change Research. Global Environmental Change, 17, 155-167.
http://dx.doi.org/10.1016/j.gloenvcha.2006.05.002
[26] O’Brien, K., Eriksen, S., Schjoien, A. and Nygaard, L. (2004) What’s in a Word? Conflicting Interpretations of Vulnerability in Climate Change Research. CICERO Working Paper 2004:04, Oslo University, Oslo.
[27] Downing, T.E., Patwardhan, A., Mukhala, E., Stephen, L., Winograd, M. and Ziervogel, G. (2002) Vulnerability Assessment for Climate Adaptation. Adaptation Planning Framework Technical Paper 3. SEI Office, Oxford.
http://www.sei.se/oxford
[28] Liverman, D.M. (1990) Chapter 26: Vulnerability to Global Environmental Change. In: Kasperson, R.E., Dow, K., Golding, D. and Kasperson, J.X., Eds., Understanding Global Environmental Change: The Contributions of Risk Analysis and Management, Clark University, Worcester, 27-44.
[29] Cannon, T. (2000) Vulnerability Analysis and Disasters. In: Parker, D.J., Ed., Floods, Routledge, London, 45-55.
[30] Adger, W.N. (1999) Social Vulnerability to Climate Change and Extremes in Coastal Vietnam. World Development, 27, 249-269.
http://dx.doi.org/10.1016/S0305-750X(98)00136-3
[31] DFID (1999) Sustainable Livelihood Guidance Sheets.
http://www.eldis.org/vfile/upload/1/document/0901/section2.pdf
[32] Godoy, R., Jacobson, M. and Wilkie, D. (1998) Strategies of Rain-Forest Dwellers against Misfortunes: The Tsimane Indians of Bolivia. Ethnology, 37, 55-71.
http://dx.doi.org/10.2307/3773848
[33] Scherr, S.J. (2000) A Downward Spiral? Research Evidence on the Relationship between Poverty and Natural Resource Degradation. Food Policy, 25, 479-498.
http://dx.doi.org/10.1016/S0306-9192(00)00022-1
[34] Shackleton, C.M. and Shackleton, S.E. (2004) The Importance of Non-Timber Forest Products in Rural Livelihood Security and as Safety-Nets: A Review of Evidence from South Africa. South African Journal of Science, Rhodes Centenary Issue, 100, 658-664.
[35] Wunder, S. (2001) Poverty Alleviation and Tropical Forests—What Scope for Synergies? World Development, 29, 1817-1833.
http://dx.doi.org/10.1016/S0305-750X(01)00070-5
[36] McSweeney, K. (2003) Tropical Forests as Safety-Nets? The Relative Importance of Forest Product Sale as Smallholder Insurance, Eastern Honduras. Proceedings of the International Conference on Rural Livelihoods, Forests and Biodiversity, Bonn, 19-23 May 2003.
[37] McSweeney, K. (2005) Natural Insurance, Forest Access and Compound Misfortune: Forest Resources in Smallholder Coping Strategies before and after Hurricane Mitch, North Eastern Honduras. World Development, 33, 1453-1471.
http://dx.doi.org/10.1016/j.worlddev.2004.10.008
[38] Paumgarten, F. (2007) The Significance of the Safety-Net Role of NTFPs in Rural Livelihoods, South Africa. Master’s Thesis, Rhodes University, Grahamstown.
[39] Few, R. (2003) Flooding, Vulnerability and Coping Strategies: Local Responses to a Global Threat. Progress in Development Studies, 3, 43-58.
http://dx.doi.org/10.1191/1464993403ps049ra
[40] De Waal, A. and Whiteside, A. (2003) New Variant Famine: AIDS and the Food Crisis in Southern Africa. The Lancet, 362, 1234-1237.
http://dx.doi.org/10.1016/S0140-6736(03)14548-5
[41] Maxwell, D., Ahiadeke, C., Levin, C., Armar-Klemesu, M., Zakariah, S. and Lamptey, G.W. (1999) Alternative FoodSecurity Indicators: Revisiting the Frequency and Severity of “Coping Strategies”. Food Policy, 24, 411-429.
http://dx.doi.org/10.1016/S0306-9192(99)00051-2
[42] Wong, G.Y. and Godoy, R. (2003) Consumption and Vulnerability among Foragers and Horticulturalists in the Rainforest of Honduras. World Development, 31, 1405-1419.
http://dx.doi.org/10.1016/S0305-750X(03)00099-8
[43] Dekker, M. (2004) Sustainability and Resourcefulness: Support Networks during Periods of Stress. World Development, 32, 1735-1751.
http://dx.doi.org/10.1016/j.worlddev.2004.06.002
[44] Heemskerk, M., Norton, A. and De Dehn, L. (2004) Does Public Welfare Crowd out Informal Safety Nets? Ethnographic Evidence from Rural Latin America. World Development, 32, 941-955.
http://dx.doi.org/10.1016/j.worlddev.2003.11.009
[45] Smith, D.R., Gordon, A., Meadows, K. and Zwick, K. (2001) Livelihood Diversification in Uganda: Patterns and Determinants of Change across Two Rural Districts. Food Policy, 26, 421-435.
http://dx.doi.org/10.1016/S0306-9192(01)00012-4
[46] De Jong, W., Campbell, B.M. and Schroder, J.M. (2000) Sustaining Incomes from Non-Timber Forest Products: Introduction and Synthesis. International Tree Crop Journal, 10, 267-275.
http://dx.doi.org/10.1080/01435698.2000.9753015
[47] Kepe, T. (2002) Grassland Vegetation and Rural Livelihoods: A Case Study of Resource Value and Social Dynamics on the Wild Coast, South Africa. Ph.D. Thesis, University of the Western Cape, Cape Town.
[48] Dovie, D.B.K. (2003) Rural Economy and Livelihoods from the Non-Timber Forest Products Trade. Compromising Sustainability in Southern Africa? International Journal of Sustainable Development World Ecology, 10, 247-262.
http://dx.doi.org/10.1080/13504500309469803
[49] De Merode, E., Homewood, K. and Cowlishaw, C. (2004) The Value of Bushmeat and Other Wild Foods to Rural Households Living in Extreme Poverty in Democratic Republic of Congo. Biological Conservation, 118, 573-581.
http://dx.doi.org/10.1016/j.biocon.2003.10.005
[50] Shackleton, S.E. (2005) The Significance of the Local Trade in Natural Resources Products for Livelihoods and Poverty Alleviation in South Africa. Ph.D. Thesis, Rhodes University, Grahamstown.
[51] Pattanayak, S.K. and Sills, E.O. (2001) Do Tropical Forests Provide Natural Insurance? The Microeconomics of Non-Timber Forest Product Collection in the Brazilian Amazon. Land Economics, 77, 595-612.
http://dx.doi.org/10.2307/3146943
[52] Ros-Tonen, M.A.F. and Wiersum, K.F. (2003) The Importance of Non-Timber Forest Products for Forest-Based Rural Livelihoods: An Evolving Research Agenda. A Paper Presented at the International Conference on Rural Livelihoods, Forests and Biodiversity, Bonn, 19-23 May 2003.
[53] Block, S. and Webb, P. (2001) The Dynamics of Livelihood Diversification in Post-Famine Ethiopia. Food Policy, 26, 333-350.
http://dx.doi.org/10.1016/S0306-9192(01)00015-X
[54] McKenzie, D.J. (2003) How Do Households Cope with Aggregate Shocks? Evidence from the Mexican Peso Crisis. World Development, 31, 1179-1199.
http://dx.doi.org/10.1016/S0305-750X(03)00064-0
[55] Mock, C.N., Gloyd, S., Adjei, S., Acheampong, F. and Gish, O. (2003) Economic Consequences of Injury and Resulting Family Coping Strategies in Ghana. Accident Analysis and Prevention, 35, 81-90.
http://dx.doi.org/10.1016/S0001-4575(01)00092-6
[56] Lukhele, A.K. (1990) Stokvels in South Africa. AMAGI Books, Johannesburg.
[57] Denzin, N. and Lincoln, Y., Eds. (1994) Handbook of Qualitative Research. Sage, Thousand Oaks.
[58] Yin, R.K. (2003) Case Study Research: Design and Methods. Sage Publications, London.
[59] Neuman, W.L. (2003) Social Research Methods: Qualitative and Quantitative Approaches. Allyn and Bacon, New York.
[60] Gillham, B. (2000) Case Study Research Methods. Continuum, London.
[61] Oates, J.F. (1995) The Dangers of Conservation by Rural Development: A Case Study from the Forests of Nigeria. Oryx, 29, 115-122.
http://dx.doi.org/10.1017/S0030605300020986
[62] Oates, J.F. (1999) Myth and Reality in the Rainforest: How Conservation Strategies Are Failing in West Africa. University of California Press, Berkeley.
[63] Rabinowitz, A. (1999) Nature’s Last Bastions: Sustainable Use of Our Tropical Forests May Be Little More than Wishful Thinking. Journal of Natural History, 108, 70-72.
[64] Terborgh, J. (1999) Requiem for Nature. Island Press/Shearwater Books, Washington DC.
[65] Agrawal, A. and Redford, K. (2006) Poverty, Development and Biodiversity Conservation: Shooting in the Dark? Working Paper No. 26, Wildlife Conservation Society.
[66] Naughton-Treves, L., Holland, M.B. and Brandon, K. (2005) The Role of Protected Areas in Conserving Biodiversity and Sustaining Local Livelihoods. Annual Review of Environment and Resources, 30, 219-252.
http://dx.doi.org/10.1146/annurev.energy.30.050504.164507
[67] Fortwangler, C.L. (2003) The Winding Road: Incorporating Social Justice and Human Rights into Protected Areas Policies. In: Brechin, S.R., Wilhusen, P.R., Fortwangler, C.L. and West, P.C., Eds., Contested Nature: Promoting International Biodiversity with Social Justice in the Twenty-First Century, State University of New York Press, New York, 25-39.
[68] Holmes, G. (2007) Protection, Politics and Protest: Understanding Resistance to Conservation. Conservation and Society, 5, 184-211.
[69] Naguran, R. (2002) Property Rights and Protected Areas: The Case of Ndumo Game Reserve. Proceedings of the Research Seminar on Property Rights and Environmental Degradation, Durban, 27-30 May 2002.
[70] Magome, H. and Murombedzi, J. (2003) Sharing South African National Parks: Community Land and Conservation in a Democratic South Africa. In: Adams, W.M. and Mullingan, M., Eds., Decolonizing Nature—Strategies for Conservation in a Post-Colonial Era, Earthscan Publications Ltd., London.
[71] Naughton-Treves, L. and Sanderson, S. (1995) Property, Politics and Wildlife Conservation. World Development, 23, 1265-1275.
http://dx.doi.org/10.1016/0305-750X(95)00045-E                                                                      eww141023lx