Theory and Application of Tacit Knowledge Transfer

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51216#.VFwZdmfHRK0

ABSTRACT

Tacit knowledge, regarding its essence, is a kind of “understanding”, comprehension, and the process of grasping and re-organizing experiences. Moreover, such ability can be controlled at will. However, spiritual understanding enables people to display the function of dominance and determination of knowledge. Therefore, this study first proposed the tacit knowledge transfer mode; there are two major strategies for the Tacit Knowledge Transfer Method (TKTM): depict the essence instead of the appearance and understand spiritually. In other words, it allows learners to represent the knowledge learned and transfer it into body memory in order to apply it to similar situations through deduction and inference. This study aims to integrate Tacit Knowledge Transfer Method (TKTM) into sketch instruction. The first phase was “knowledge accumulation”: we used “Mu” way to accumulate drawing knowledge. The phase two was “knowledge transfer”: we used “Lin” way to transfer drawing knowledge. In the process, the students in Department of Design are divided into the experimental group and the controlled group for comparisons. Having seven design experts evaluate the teaching effectiveness on the two groups (Mixed and anonymous), aiming at students’ learning achievement. The experiment concludes two main results: firstly, based on the expert evaluation scores, Tacit Knowledge Transfer Method (TKTM) proves the significant effect of Tacit Knowledge Transfer Method (TKTM) on Perspective Accuracy, Line Stability, and Form Expressivity of freehand sketch; secondly, from the experiment process and survey results, it was evident that Tacit Knowledge Transfer Method (TKTM) has direct correlation with participants’ assertiveness. If there is a conflict between norm knowledge the effectiveness of transfer will be reduced significantly.

Cite this paper

Chang, J. , Luh, D. , Kung, S. and Ueda, A. (2014) Theory and Application of Tacit Knowledge Transfer. Creative Education, 5, 1733-1739. doi: 10.4236/ce.2014.519193.

References

[1] Nonaka, I., & Takeuchi, H. (2004). The Essence of Innovation (with A. Katsumi). Tokyo: Nikkei BP.
[2] Ou, C. J. (2008). A Study on Industrial Design Final Sketches in the Phase of Developing Ideas. Master Thesis, Graduate Institute of Innovation and Design, National Taipei University of Technology.
[3] Polanyi, M. (1967). The Tacit Knowledge Dimension. London: Routledge & Kegan Paul.
[4] Stewart, T. A. (2002). The Wealth of Knowledge: Intellectual Capital and Twenty-First Century Organization. New York: Currency.
[5] Yi, J. (2006). Wang Qi Yue Recommend Copying Calligraphy (February 10, 2012).                         eww141107lx
Advertisements

Gene Expression Analysis of Extracellular Matrix and Cytokines after Uterine Artery Embolization

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51199#.VFrT_GfHRK0

ABSTRACT

Arterial embolization of myomas (AEM) is an established option for the conservative treatment of uterine leio-myomas; it treats all present uterine nodules at once, is less invasive than other procedures and effective in controlling symptoms, and does not require long term hospitalizations. Nevertheless, the potential impact on endometrial morphological and functional outcomes after the procedure is still controversial based on reports of endometritis or eventual transient ischemia. This study evaluated endometrial reorganization in uterine leiomyoma patients, before and after AEM, through gene expression analyses of extracellular matrix and cytokines genes in theendometrial tissue. Eight patients with leiomyomas were evaluated before AEM and 6 months after. The examinations included transvaginal pelvic ultrasonography, dosing of the follicle-stimulating hormone, and endometrial biopsy during the second phase of the menstrual cycle. RNA was extracted from endometrial samples, cDNA was synthesized, and applied on PCR arrayTM plates to evaluate the expression of extracellular matrix (ECM) genes and cytokines and their receptors’ genes (CYT). The ECM overexpressed genes were MMP (1, 3, 10, 11, and 14), CTGF1, ICAM1, TBHS1, ITGA2, ITGA3, ITGB3, COL7A1, COL12A, SPP1, and TNC; ADAMTS8 was underexpressed. The CYT overexpressed genes were SPP1, BCL6, CXCL12, IL-8, and CEBPB; CXCL13 and CCL21 were underexpressed. The ECM results showed overexpression of proteases that are responsible for dysfunctions in the ECM, and of genes responsible for adhesion and membrane components. The CYT results showed overexpression of chemokines responsible for endometrial repair, and underexpression of cytokines involved in inflammatory processes in the endometrial tissue. AEM treatment did not negatively affect the endometrial function at 6 months after embolization. This study broadens the knowledge about using a procedure that is relevant to the treatment of leiomyomas and contributes to the establishment of future guidelines for the decision making process for physicians and patients.

Cite this paper

Bernardo, A. , Bonetti, T. , da Silva, I. , Gomes, M. , Castro, R. , Girão, M. and Bonduki, C. (2014) Gene Expression Analysis of Extracellular Matrix and Cytokines after Uterine Artery Embolization. Open Journal of Obstetrics and Gynecology, 4, 935-943. doi: 10.4236/ojog.2014.415132.

References

[1] Lockwood, C.J., Krikun, G., Hausknecht, V., Wang, E.Y. and Schatz, F. (1997) Decidual Cell Regulation of Hemostasis during Implantation and Menstruation. Annals of the New York Academy of Sciences, 828, 188-193. http://dx.doi.org/10.1111/j.1749-6632.1997.tb48539.x
[2] Ravina, J.H., Merland, J.J., Herbreteau, D., Houdart, E., Bouret, J.M. and Medelenat, P. (1994) Preoperative Embolization of Uterine Fibroma. Preliminary Results (10 Cases). Presse Medicale, 23, 1540.
[3] Messina, M.L, Bozzini, N., Halbe, H.W. and Pinotti, J.A. (2002) Uterine Artery Embolization for the Treatment of Uterine Leiomyomata. International Journal of Gynecology and Obstetrics, 79, 11-16. http://dx.doi.org/10.1016/S0020-7292(02)00182-0
[4] Bonduki, C.M., Gon?alves, P., Yokohama, C., Costa, O.F., Baracat, E.C., Lima, G.R. and Gir?o, M.J.B.C. (2006) Pregnancy and Delivery after Arterial Embolization for Fibroid Treatment. Revista Brasileira de Ginecologia e Obstetrícia, 28, 596-600. http://dx.doi.org/10.1590/S0100-72032006001000005
[5] Ace, C.I. and Okulicz, W.C. (2004) Microarray Profiling of Progesterone-Regulated Endometrial Genes during the Rhesus Monkey Secretory Phase. Reproductive Biology and Endocrinology, 2, 54. http://dx.doi.org/10.1186/1477-7827-2-54
[6] Chand, A.L., Murray, A.S., Jones, R.L., Hannan, N.J., Salamonsen, L.A. and Rombauts, L. (2007) Laser Capture Microdissection and cDNA Array Analysis of Endometrium Identify CCL16 and CCL21 as Epithelial-Derived Inflammatory Mediators Associated with Endometriosis. Reproductive Biology and Endocrinology, 5, 18. http://dx.doi.org/10.1186/1477-7827-5-18
[7] Zhao, Y., Zhang, W. and Wang, S. (2008) The Expression of Estrogen Receptor Isoforms Alpha, Beta and Insulin-Like Growth Factor-I in Uterine Leiomyoma. Gynecological Endocrinology, 24, 549-554. http://dx.doi.org/10.1080/09513590802340522
[8] Katsumori, T., Nakajima, K. and Tokuhiro, M. (2001) Gadolinium-Enhanced MR Imaging in the Evolution of Uterine Fibroids Treated with Uterine Artery Embolization. American Journal of Roentgenology, 177, 303-307. http://dx.doi.org/10.2214/ajr.177.2.1770303
[9] Sena-Martins, M., Roteli-Martins, C.M., Tadini, V., de Souza, G.A., Kisilevzky, N. and Lazar Jr., F. (2003) Uterine Artery Embolization for the Treatment of Symptomatic Myomas in Brazilian Women. S?o Paulo Medical Journal, 121, 185-190. http://dx.doi.org/10.1590/S1516-31802003000500002
[10] Tajiri, Y., Igarashi, T., Li, D., Mukai, K., Suematsu, M., Fukui, E., Yoshizawa, M. and Matsumoto, H. (2010) Tubulointerstitial Nephritis Antigen-Like 1 is Expressed in the Uterus and Binds with Integrins in Decidualized Endometrium during Postimplantation in Mice. Biology of Reproduction, 82, 263-270. http://dx.doi.org/10.1095/biolreprod.109.080028
[11] Jin, Y., Wang, X., Xiao, Y., Lv, C., Ding, C. and Lin, Q. (2009) The Role of TSP-1 on Decidual Macrophages Involved in the Susceptibility to Unexplained Recurrent Spontaneous Abortion. American Journal of Reproductive Immunology, 61, 253-260. http://dx.doi.org/10.1111/j.1600-0897.2009.00689.x
[12] Tan, O., Ornek, T., Seval, Y., Sati, L. and Arici, A. (2008) Tenascin Is Highly Expressed in Endometriosis and Its Expression Is Upregulated by Estrogen. Fertility and Sterility, 89, 1082-1089.
http://dx.doi.org/10.1016/j.fertnstert.2007.05.028
[13] Maybin, J.A., Barcroft, J., Thiruchelvam, U., Hirani, N., Jabbour, H.N. and Critchley, H.O. (2012) The Presence and Regulation of Connective Tissue Growth Factor in the Human Endometrium. Human Reproduction, 27, 1112-1121. http://dx.doi.org/10.1093/humrep/der476
[14] Porter, S., Span, P.N., Sweep, F.C., Tjan-Heijnen, V.C., Pennington, C.J., Pedersen, T.X., Johnsen, M., Lund, L.R., Romer, J. and Edwards, D.R. (2006) ADAMTS8 and ADAMTS15 Expression Predicts Survival in Human Breast Carcinoma. International Journal of Cancer, 118, 1241-1247.
http://dx.doi.org/10.1002/ijc.21476
[15] Kitaya, K. and Yasuo, T. (2010) Aberrant Expression of Selectin E, CXCL1, and CXCL13 in Chronic Endometritis. Modern Pathology, 23, 1136-1146. http://dx.doi.org/10.1038/modpathol.2010.98
[16] Dunlap, K.A., Erikson, D.W., Burghardt, R.C., White, F.J., Reed, K.M., Farmer, J.L., Spencer, T.E., Magness, R.R., Bazer, F.W., Bayless, K.J. and Johnson, G.A. (2008) Progesterone and Placentation Increase Secreted Phosphoprotein One (SPP1 or Osteopontin) in Uterine Glands and Stroma for Histotrophic and Hematotrophic Support of Ovine Pregnancy. Biology of Reproduction, 79, 983-990.
http://dx.doi.org/10.1095/biolreprod.108.071068
[17] Kannan, A., Fazleabas, A.T., Bagchi, I.C. and Bagchi, M.K. (2010) The Transcription Factor C/EBPβ Is a Marker of Uterine Receptivity and Expressed at the Implantation Site in the Primate. Reproductive Sciences, 17, 434-443. http://dx.doi.org/10.1177/1933719110361384
[18] Maruo, T., Ohara, N., Yoshida, S., Nakabayashi, K., Sasaki, H., Xu, Q., Chenb, W. and Yamada, H. (2010) Translational Research with Progesterone Receptor Modulator Motivated by the Use of Levonorgestrel-Releasing Intrauterine System. Contraception, 82, 435-441.
http://dx.doi.org/10.1016/j.contraception.2010.05.006
[19] Maybin, J.A., Hirani, N., Jabbour, H.N. and Critchley, H.O. (2011) Novel Roles for Hypoxia and Prostaglandin E2 in the Regulation of IL-8 during Endometrial Repair. The American Journal of Pathology, 178, 1245-1256. http://dx.doi.org/10.1016/j.ajpath.2010.11.070
[20] Kenneth, J.L. and Schmittgen, T.D. (2001) Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2?ΔΔCT Method. Applied Biosystems, Foster City, California 94404, and Department of Pharmaceutical Sciences, College of Pharmacy, Washington State University, Pullman, Washington 99164-6534. http://www.science.smith.edu/cmbs/documents/Review-RelativeQRT.PDF                                                                                 eww141106lx

Effectiveness of Compatibilizer on Mechanical Properties of Recycled PET Blends with PE, PP, and PS

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=47471#.VFmBTmfHRK0

ABSTRACT

Recycled PET (R-PET) is well known to exhibit brittle behavior in the presence of notches and indicated the low heat distortion temperature. In addition, it is hard to prevent some impurities such as cap or label of the bottle that mixed into R-PET during the recycling process. In this paper, the effect of the amounts and kinds of compatibilizers on the morphological characteristics and mechanical performance of recycled poly(ethylene terephthalate) (R-PET) compounded with polyethylene (PE), polypropylene (PP), and polystyrene (PS) was investigated. From the results, with an increase in the glycidyl methacrylate modified PE (EGMA) additive contents, in the increment of the Izod impact strength of Composite-G was obtained. In addition, it was found that the miscibility of Composite-G was improved with increasing the amount of EGMA, which indicated from the result of SEM images.

Cite this paper

Imamura, N. , Sakamoto, H. , Higuchi, Y. , Yamamoto, H. , Kawasaki, S. , Yamada, K. , Nishimura, H. and Nishino, T. (2014) Effectiveness of Compatibilizer on Mechanical Properties of Recycled PET Blends with PE, PP, and PS. Materials Sciences and Applications, 5, 548-555. doi: 10.4236/msa.2014.58057.

References

[1] Kunimune, N., Yamada, K., Leong, Y.W., Thumsorn, S. and Hamada, H. (2011) Influence of the Reactive Processing of Recycled Poly(ethylene terephthalate)/Poly(ethylene-co-glycidyl methacrylate) Blends. Journal of Applied Polymer Science, 120, 50-55.
http://dx.doi.org/10.1002/app.32836
[2] Pietrasanta, Y., Robin, J.-J., Torres, N. and Boutevin, B. (1999) Reactive Compatibilization of HDPE/PET Blends by Glycidyl Methacrylate Functionalized Polyolefins. Macromolecular Chemistry and Physics, 200, 142-149.
[3] Pracella, M., Pazzagli, F. and Galeski, A. (2002) Reactive Compatibilization and Properties of Recycled Poly(Ethylene Terephthalate)/Polyethylene Blends. Polymer Bulletin, 48, 67-74.
http://dx.doi.org/10.1007/s00289-002-0001-7
[4] Papadopoulou, C.P. and Kalfoglou, N.K. (2000) Comparison of Compatibilizer Effectiveness for PET/PP Blends: Their Mechanical, Thermal and Morphology Characterization. Polymer, 41, 2543-2555.
http://dx.doi.org/10.1016/S0032-3861(99)00442-5
[5] Thumsorn, S., Yamada, K., Leong, Y.W. and Hamada, H. (2011) Development of Cockleshell-Derived CaCO3 for Flame Retardancy of Recycled PET/Recycled PP Blend. Materials Sciences and Applications, 2, 59-69.
http://dx.doi.org/10.4236/msa.2011.22009
[6] Thumsorn, S., Yamada, K., Leong, Y.W. and Hamada, H. (2012) Effect of Pellet Size and Compatibilization on Thermal Decomposition Kinetic of Recycled Polyethylene Terephthalate/Recycled Polypropylene Blend. Journal of Applied Polymer Science, 124, 1605-1613.
http://dx.doi.org/10.1002/app.35166
[7] Ogasahara, M., Shidou, M., Nagata, S., Yamada, K., Leong, Y.W. and Hamada, H. (2012) Effectiveness of High Frequency Heating on Drying and Intrinsic Viscosity Enhancement of Recycled Poly(Ethylene Terephthalate). Journal of Applied Polymer Science, 126, E166-E171.
http://dx.doi.org/10.1002/app.34368
[8] Thumsorn, S., Yamada, K., Leong, Y.W. and Hamada, H. (2013) Thermal Decomposition Kinetic and Flame Retardancy of CaCO3 Filled Recycled Polyethylene Terephthalate/Recycled Polypropylene Blend. Journal of Applied Polymer Science, 127, 1245-1256.
http://dx.doi.org/10.1002/app.37673
[9] Yamada, K. and Thumsorn, S. (2013) Effectiveness of Talc Filler on Thermal Resistance of Recycled PET Blends. Advances in Materials Physics and Chemistry, 3, 327-331.
http://dx.doi.org/10.4236/ampc.2013.38045
[10] Inoya, H., Leong, Y.W., Klinklai, W., Thumsorn, S., Makata, Y. and Hamada, H. (2012) Compatibilization of Recycled Poly(Ethylene Terephthalate) and Polypropylene Blends: Effect of Polypropylene Molecular Weight on Homogeneity and Compatibility. Journal of Applied Polymer Science, 124, 3947-3955.
http://dx.doi.org/10.1002/app.34405
[11] Inoya, H., Leong, Y.W., Klinklai, W., Takai, Y. and Hamada, H. (2012) Compatibilization of Recycled Poly(Ethylene Terephthalate) and Polypropylene Blends: Effect of Compatibilization on Blend Toughness, Dispersion of Minor Phase, and Thermal Stability. Journal of Applied Polymer Science, 124, 5260-5269.
http://dx.doi.org/10.1002/app.34385                                                                                     eww141105lx

Unusual Presentation of Non-Hodgkin’s B-Cell Lymphoma with Unilateral Right Limb Lymphedema

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51180#.VFlyXWfHRK0

ABSTRACT

Background: In clinical practice and setting of general practice it is common to see patients with leg edema. To correctly identify the etiology of the edema and then properly manage the cause is not always easy. The unilateral lymphedema of the lower limb has rarely been reported as an initial presentation for lymphoma, especially in females, usually without classic signs or symptoms, but often with inguinal lymphadenopathy or abdominal masses. Case Report: In this article, we report a rare case of unilateral lower limb edema in a healthy obese woman who complained about the appearance of the disease for several months and for whom deep vein thrombosis and other diseases had been excluded. The histological examination of the biopsy of an enlarged lymph node in the right groin, which was compressing the iliac and femoral vein, revealed the presence of B cell non-Hodgkin lymphoma with high-grade malignancy. Conclusions: A common challenge for primary care physicians is to determine the cause and find an effective treatment for leg edema of unclear etiology. Non-Hodgkin’s B-cell Lymphoma should be considered in the differential diagnosis in patients with unilateral leg edema when the swelling is chronic and deep venous thrombosis is promptly excluded.

Cite this paper

Bolognesi, M. and Bolognesi, D. (2014) Unusual Presentation of Non-Hodgkin’s B-Cell Lymphoma with Unilateral Right Limb Lymphedema. Case Reports in Clinical Medicine, 3, 577-582. doi: 10.4236/crcm.2014.311125.

References

[1] Gorman, W.P., Davis, K.R. and Donnelly, R. (2000) ABC of Arterial and Venous Disease. Swollen Lower Limb-1: General Assessment and Deep Vein Thrombosis. BMJ, 320, 1453-1456.
http://dx.doi.org/10.1136/bmj.320.7247.1453
[2] Mortimer, P.S. (2000) Swollen Lower Limb-2: Lymphoedema. BMJ, 320, 1527-1529.
http://dx.doi.org/10.1136/bmj.320.7248.1527
[3] Szuba, A. and Rockson, S.G. (1998) Lymphedema: Classification, Diagnosis, and Therapy. Vascular Medicine, 3, 145-146.
http://dx.doi.org/10.1177/1358836X9800300209
[4] Yale, S.H. and Mazza, J.J. (2001) Approach to Diagnosing Lower Extremity Edema. Comprehensive Therapy, 27, 242-252.
http://dx.doi.org/10.1007/s12019-001-0021-5
[5] Smith, R.D., Spittel, J.A. and Schirger, A. (1963) Secondary Lymphedema of the Leg: Its Characteristics and Diagnostic Implications. JAMA, 185, 116-118
http://dx.doi.org/10.1001/jama.1963.03060020040018
[6] Kinmonth, J.B., Taylor, G.W., Tracy, G.D. and Marsh, J.D. (1957) Primary Lymph-Oedema. Clinical and Lymphangiographic Studies of a Series of 107 Patients in Which the Lower Limbs Were Affected. British Journal of Surgery, 45, 1±10.
[7] Akritidis, N. and Baxevanos, G. (2007) Unilateral Lymphoma-Related Leg Edema. Journal of Clinical Oncology, 25, 5523-5524
[8] Fijten, G.H. and Blijham, G.H. (1988) Unexplained Lymphadenopathy in Family Practice. An Evaluation of the Probability of Malignant Causes and the Effectiveness of Physicians’ Workup. The Journal of Family Practice, 27, 373-376.
[9] Harry, L. and Loachim, J.B. (1994) Lymph Node Pathology. 2nd Edition, Olippincott Company, Philadelphia.
[10] Ferrer, R. (1998) Lymphadenopathy: Differential Diagnosis and Evaluation. American Family Physician, 58, 1315.
[11] Tiwari, A., Cheng, K.S., Button, M., Myint, F. and Hamilton, G. (2003) Differential Diagnosis, Investigation, and Current Treatment of Lower Limb Lymphedema. JAMA Surgery, 138, 152-161.
http://dx.doi.org/10.1001/archsurg.138.2.152
[12] Mauch, P.M., Kalish, L.A., Kadin, M., Coleman, C.N., Osteen, R. and Hellman, S. (1993) Patterns of Presentation of Hodgkin Disease. Implications for Etiology and Pathogenesis. Cancer, 71, 2062-2071.
http://dx.doi.org/10.1002/1097-0142(19930315)71:6<2062::AID-CNCR2820710622>3.0.CO;2-0
[13] Rigas, A., Kostakis, A., Safioleas, M., Vaos, G., Zonas, C. and Skalkeas, G. (1981) Lymphedema as the First Manifestation of Hodgkin’s Disease. Lymphology, 14, 138-140.
[14] Halilbasic, A., Mesic, E., Cikusic, E. and Arnautovic, A. (2006) Non-Hodgkin’s Lymphoma in the North-East Bosnia: Changes in Biological Aggressiveness and Primary Presentation of the Disease. Medicinski Arhiv (Medical Archives), 60, 78-83.
[15] Shankland, K.R., Armitage, J.O. and Hancock, B.W. (2012) Non-Hodgkin Lymphoma. Lancet, 380, 848-857.
http://dx.doi.org/10.1016/S0140-6736(12)60605-9
[16] Sajid, T., Intisar-ul-Haq, Haq, I. and Chaudhary, A.K. (2009) An Obscure Cause of Leg Edema, Non-Hodgkin’s Lymphoma. Journal of the College of Physicians and Surgeons—Pakistan, 19, 254-256.
[17] Hawkins, K.A., Amorosi, E.L. and Silber, R. (1980) Unilateral Leg Edema. A Symptom of Lymphoma. JAMA, 244, 2640-2641.
http://dx.doi.org/10.1001/jama.1980.03310230042023
[18] Armitage, J.O. (2007) How I Treat Patients with Diffuse Large B-Cell Lymphoma. Blood, 110, 29-36.
http://dx.doi.org/10.1182/blood-2007-01-041871
[19] Dunphy, C.H. and Ramos, R. (1997) Combining Fine-Needle Aspiration and Flow Cytometric Immunophenotyping in Evaluation of Nodal and Extranodal Sites for Possible Lymphoma: A Retrospective Review. Diagnostic Cytopathology, 16, 200-206.                                                                                                                                eww141105lx

Factor Structure of the Coping Inventory for Stressful Situations (CISS) in Japanese Workers

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50255#.VDNPj1fHRK0

ABSTRACT

Different models of factor structure were proposed for the Coping Inventory for Stressful Situations (CISS) as a measure of coping style. This study confirmed psychometric properties and stability of the factor structure and differences among models for various age groups. The CISS of the Japanese version and the Hopkins Symptom Checklist (HSCL) were administered to a sample of 781 Japanese workers. Using factor analysis, three-, four-, and five-factor models were examined. Simultaneous multiple-group analysis was conducted using samples of 568 workers and 507 students. The five-factor model was more robust than the original three- and four-factor models. Reliabilities and applicability for a wide age range were confirmed. In terms of predictive validity, symptoms of somatization, obsessive-compulsiveness, interpersonal sensitivity, depression, and anxiety were positively related with Rumination coping.

Cite this paper

Takagishi, Y. , Sakata, M. & Kitamura, T. (2014). Factor Structure of the Coping Inventory for Stressful Situations (CISS) in Japanese Workers. Psychology, 5, 1620-1628. doi: 10.4236/psych.2014.514172.

References

[1] Cosway, R., Endler, N. S., Sadler, A. J., & Deary, I. J. (2000). The Coping Inventory for Stressful Situations: Factorial Structure and Associations with Personality Traits and Psychological Health. Journal of Applied Biobehavioral Research, 5, 121-143.
http://dx.doi.org/10.1111/j.1751-9861.2000.tb00069.x
[2] Derogatis, L. R., Lipman, R. S., Rickels, K., Uhlenhuth, E. H., & Covi, L. (1974). The Hopkins Symptom Checklist (HSCL): A Self-Report Symptom Inventory. Behavioral Science, 19, 1-15.
http://dx.doi.org/10.1002/bs.3830190102
[3] Endler, N. S., & Parker, J. D. A. (1990). Multidimensional Assessment of Coping: A Critical Evaluation. Journal of Personality and Social Psychology, 58, 844-854.
http://dx.doi.org/10.1037/0022-3514.58.5.844
[4] Endler, N. S., & Parker, J. D. A. (1994). Assessment of Multidimensional Coping: Task, Emotions, and Avoidance Strategies. Psychological Assessment, 6, 50-60.
http://dx.doi.org/10.1037/1040-3590.6.1.50
[5] Endler, N. S., Parker, J. D. A., & Butcher, J. N. (1993). A Factor Analytic Study of Coping Styles and the MMPI-2 Content Scales. Journal of Clinical Psychology, 49, 523-527.
http://dx.doi.org/10.1002/1097-4679(199307)49:4<523::AID-JCLP2270490409>3.0.CO;2-M
[6] Folkman, S., & Lazarus, R. S. (1985). If It Changes It Must Be a Process: A Study of Emotion and Coping during Three Stages of a College Examination. Journal of Personality and Social Psychology, 48, 150-170.
http://dx.doi.org/10.1037/0022-3514.48.1.150
[7] Folkman, S., & Lazarus, R. S. (1988). Manual for the Ways of Coping Questionnaire: Research Edition. Palo Alto, CA: Consulting Psychologists Press.
[8] Fresco, D. M., Frankel, A. N., Mennin, D. S., Turk, C. L., & Heimberg, R. G. (2002). Distinct and Overlapping Features of Rumination and Worry: The Relationship of Cognitive Production to Negative Affective States. Cognitive Therapy and Research, 26, 179-188.
http://dx.doi.org/10.1023/A:1014517718949
[9] Higgins, J. E., & Endler, N. S. (1995). Coping, Life Stress, and Psychological and Somatic Distress. European Journal of Personality, 9, 253-270.
http://dx.doi.org/10.1002/per.2410090403
[10] Ito, T., Tomita, T., Hasui, C., Otsuka, A., Katayama, Y., Kawamura, Y. et al. (2003). The Link between Response Styles and Major Depression and Anxiety Disorders after Child-Loss. Comprehensive Psychiatry, 44, 396-403.
http://dx.doi.org/10.1016/S0010-440X(03)00109-3
[11] Lazarus, R. S. (1999). Stress and Emotion: A New Synthesis. New York: Springer.
[12] Lazarus, R. S., & Folkman, S. (1984). Stress, Appraisal, and Coping. New York: Springer.
[13] Lyubomirsky, S., & Nolen-Hoeksema, S. (1995). Effects of Self-Focused Rumination on Negative Thinking and Interpersonal Problem Solving. Journal of Personality and Social Psychology, 69, 176-190.
http://dx.doi.org/10.1037/0022-3514.69.1.176
[14] McWilliams, L. A., Cox, B. J., & Enns, M. W. (2003). Use of the Coping Inventory for Stressful Situations in a Clinically Depressed Sample: Factor Structure, Personality Correlates, and Prediction of Distress. Journal of Clinical Psychology, 59, 1371-1385.
http://dx.doi.org/10.1002/jclp.10228
[15] Moos, R. H., & Holahan, C. J. (2003). Dispositional and Contextual Perspectives on Coping: Toward an Integrative Framework. Journal of Clinical Psychology, 59, 1387-1403.
http://dx.doi.org/10.1002/jclp.10229
[16] Nakano, K., & Kitamura, T. (2001). The Relation of the Anger Subcomponent of Type A Behavior to Psychological Symptoms in Japanese and Foreign Students. Japanese Psychological Research, 43, 50-54.
http://dx.doi.org/10.1111/1468-5884.00159
[17] Nolen-Hoeksema, S. (2000). The Role of Rumination in Depressive Disorders and Mixed Anxiety/Depressive Symptoms. Journal of Abnormal Psychology, 109, 504-511.
http://dx.doi.org/10.1037/0021-843X.109.3.504
[18] Nolen-Hoeksema, S., Girgus, J. S., & Seligman, M. E. (1992). Predictors and Consequences of Childhood Depressive Symptoms: A 5-Year Longitudinal Study. Journal of Abnormal Psychology, 101, 405-422.
http://dx.doi.org/10.1037/0021-843X.101.3.405
[19] Nolen-Hoeksema, S., Paeker, L. E., & Larson, J. (1994). Ruminative Coping with Depressed Mood Following Loss. Journal of Personality and Social Psychology, 67, 92-104.
http://dx.doi.org/10.1037/0022-3514.67.1.92
[20] Rafnsson, F. D., Smari, J., Windle, M., Mears, S. A., & Endler, N. S. (2006). Factor Structure and Psychometric Characteristics of the Icelandic Version of the Coping Inventory for Stressful Situations (CISS). Personality and Individual Differences, 40, 1247-1258.
http://dx.doi.org/10.1016/j.paid.2005.11.011
[21] Sakata, M., Takagishi, Y., & Kitamura, T. (2013). Factor Structure and Psychometric Properties of the Japanese Version of the Coping Inventory for Stressful Situations (CISS): A Reclassification of Coping Styles Using both Exploratory and Confirmatory Factor Analyses. Journal of Psychology and Psychotherapy, 3, 2.
[22] Schermelleh-Engel, K., Moosbrugger, H., & Müller, H. (2003). Evaluating the Fit of Structural Equation Models: Test of Significance and Descriptive Goodness-of-Fit Measures. Methods of Psychological Research Online, 8, 23-74.
[23] Skinner, E. A., Edge, K., Altman, J., & Sherwood, H. (2003). Searching for the Structure of Coping: A Review and Critique of Category Systems for Classifying Ways of Coping. Psychological Bulletin, 129, 216-269.
http://dx.doi.org/10.1037/0033-2909.129.2.216
[24] Van Heck, G., & De Ridder, D. (2001). Dimensions and Measurement of Coping with Loss. In M. S. Stroebe, W. Stroebe, R. O. Hansson, & H. Schut (Eds.), New Handbook of Bereavement: Consequences, Coping, and Care (pp. 449-469). Washington, DC: American Psychological Association.                                                                 eww141007lx

The Biological Actions and Mechanisms of Brain-Derived Neurotrophic Factor in Healthy and Disordered Brains

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=49702#.VBe18ld2W3M

The Biological Actions and Mechanisms of Brain-Derived Neurotrophic Factor in Healthy and Disordered Brains.

ABSTRACT

Brain-derived neurotrophic factor (BDNF) is a neurotrophin that elicits neuronal survival and differentiation, synaptic transmission, and the modulation of synaptic plasticity. The biological actions of BDNF are mediated via two distinct receptors: the high-affinity tropomyosin-related kinase B (TrkB) receptor and the low-affinity p75 neurotrophin receptor (p75NTR). Recent findings regarding the actions and mechanisms of BDNF are reviewed here. Activity-dependent synaptic plasticity, as exemplified by long-term potentiation (LTP) and long-term depression (LTD), underlies the cellular mechanism of learning and memory. An accumulating body of evidence shows that BDNF modulates synaptic plasticity. This function requires extracellular neurotrophin release, synaptic activity-dependent local protein synthesis. In addition, a precursor of BDNF, proBDNF, is emerging as a new ligand with biological activities that are distinct from those of BDNF. The proteolytic cleavage of proBDNF is also proposed as a mechanism that determines the direction of BDNF actions. This review discusses the post-translational processing of proBDNF, the modulatory roles of the human BDNF polymorphism Val66Met, recent reports of the novel mechanisms of BDNF expression, and clinical reports showing the roles of BDNF in the blood. Taken together, these data provide new insights into the biological roles of BDNF and its related molecules in the central nervous system.

Cite this paper

Mizui, T. , Tanima, Y. , Komatsu, H. , Kumanogoh, H. and Kojima, M. (2014) The Biological Actions and Mechanisms of Brain-Derived Neurotrophic Factor in Healthy and Disordered Brains. Neuroscience & Medicine, 5, 183-195. doi: 10.4236/nm.2014.54021.
References

 

[1] Levi-Montalcini, R. and Hamburge, V. (1953) A Diffusible Agent of Mouse Sarcoma, Producing Hyperplasia of Sympathetic-Ganglia and Hyperneurotization of Viscera in the Chick Embryo. Journal of Experimental Zoology, 123, 233-287.
http://dx.doi.org/10.1002/jez.1401230203
[2] Cohen, S. and Levi-Montalcini, R. (1956) A Nerve Growth-Stimulating Factor Isolated from Snake Venom. Proceedings of the National Academy of Sciences of the United States of America, 42, 571-574.
http://dx.doi.org/10.1073/pnas.42.9.571
[3] Cohen, S. (1960) Purification of a Nerve-Growth Promoting Protein from the Mouse Salivery Gland and Its Neuro-Cytotoxic Antiserum. Proceedings of the National Academy of Sciences of the United States of America, 46, 302-311.
http://dx.doi.org/10.1073/pnas.46.3.302
[4] Bocchini, V. and Angeletti, P.U. (1969) The Nerve Growth Factor: Purification as a 30,000-Molecular-Weight Protein. Proceedings of the National Academy of Sciences of the United States of America, 64, 787-794.
http://dx.doi.org/10.1073/pnas.64.2.787
[5] Barde, Y.A., Edgar, D. and Thoenen, H. (1982) Purification of a New Neurotrophic Factor from Mammalian Brain. The EMBO Journal, 1, 549-553.
[6] Leibrock, J., Lottspeich, F., Hohn, A., Hofer, M., Hengerer, B., Masiakowski, P., Thoenen, H. and Barde, Y.A. (1989) Molecular Cloning and Expression of Brain-Derived Neurotrophic Factor. Nature, 341, 149-152.
http://dx.doi.org/10.1038/341149a0
[7] Bibel, M. and Barde, Y.A. (2000) Neurotrophins: Key Regulators of Cell Fate and Cell Shape in the Vertebrate Nervous System. Genes & Development, 14, 2919-2937.
http://dx.doi.org/10.1101/gad.841400
[8] Chao, M.V. (2003) Neurotrophins and Their Receptors: A Convergence Point for Many Signalling Pathways. Nature Reviews Neuroscience, 4, 299-309.
http://dx.doi.org/10.1038/nrn1078
[9] Reichardt, L.F. (2006) Neurotrophin-Regulated Signalling Pathways. Philosophical Transactions of the Royal Society B: Biological Sciences, 361, 1545-1564.
http://dx.doi.org/10.1098/rstb.2006.1894
[10] Lu, B., Pang, P.T. and Woo, N.H. (2005) The Yin and Yang of Neurotrophin Action. Nature Reviews Neuroscience, 6, 603-614.
http://dx.doi.org/10.1038/nrn1726
[11] Kolbeck, R., Jungbluth, S. and Barde, Y.A. (1994) Characterisation of Neurotrophin Dimers and Monomers. European Journal of Biochemistry, 225, 995-1003.
http://dx.doi.org/10.1111/j.1432-1033.1994.0995b.x
[12] Egan, M.F., Kojima, M., Callicott, J.H., Goldberg, T.E., Kolachana, B.S., Bertolino, A., Zaitsev, E., Gold, B., Goldman, D., Dean, M., Lu, B. and Weinberger, D.R. (2003) The BDNF Val66Met Polymorphism Affects Activity-Dependent Secretion of BDNF and Human Memory and Hippocampal Function. Cell, 112, 257-269.
http://dx.doi.org/10.1016/S0092-8674(03)00035-7
[13] Bath, K.G. and Lee, F.S. (2006) Variant BDNF (Val66Met) Impact on Brain Structure and Function. Cognitive, Affective, & Behavioral Neuroscience, 6, 79-85.
http://dx.doi.org/10.3758/CABN.6.1.79
[14] Liepinsh, E., Ilag, L.L., Otting, G. and Ibáñez, C.F. (1997) NMR Structure of the Death Domain of the p75 Neurotrophin Receptor. The EMBO Journal, 16, 4999-5005.
http://dx.doi.org/10.1093/emboj/16.16.4999
[15] He, X.L. and Garcia, K.C. (2004) Structure of Nerve Growth Factor Complexed with the Shared Neurotrophin Receptor p75. Science, 304, 870-875.
http://dx.doi.org/10.1126/science.1095190
[16] Hempstead, B.L. (2002) The Many Faces of p75NTR. Current Opinion in Neurobiology, 12, 260-267.
http://dx.doi.org/10.1016/S0959-4388(02)00321-5
[17] Lee, R., Kermani, P., Teng, K.K. and Hempstead, B.L. (2001) Regulation of Cell Survival by Secreted Proneurotrophins. Science, 294, 1945-1948.
http://dx.doi.org/10.1126/science.1065057
[18] Teng, H.K., Teng, K.K., Lee, R., Wright, S., Tevar, S., Almeida, R.D., Kermani, P., Torkin, R., Chen, Z.Y., Lee, F.S., Kraemer, R.T., Nykjaer, A. and Hempstead, B.L. (2005) ProBDNF Induces Neuronal Apoptosis via Activation of a Receptor Complex of p75NTR and Sortilin. The Journal of Neuroscience, 25, 5455-5463.
http://dx.doi.org/10.1523/JNEUROSCI.5123-04.2005
[19] Koshimizu, H., Kiyosue, K., Hara, T., Hazama, S., Suzuki, S., Uegaki, K., Nagappan, G., Zaitsev, E., Hirokawa, T., Tatsu, Y., Ogura, A., Lu, B. and Kojima, M. (2009) Multiple Functions of Precursor BDNF to CNS Neurons: Negative Regulation of Neurite Growth, Spine Formation and Cell Survival. Molecular Brain, 2, 27.
http://dx.doi.org/10.1186/1756-6606-2-27
[20] Taylor, A.R., Gifondorwa, D.J., Robinson, M.B., Strupe, J.L., Prevette, D., Johnson, J.E., Hempstead, B., Oppenheim, R.W. and Milligan, C.E. (2012) Motoneuron Programmed Cell Death in Response to ProBDNF. Developmental Neurobiology, 72, 699-712.
http://dx.doi.org/10.1002/dneu.20964
[21] Nykjaer, A., Lee, R., Teng, K.K., Jansen, P., Madsen, P., Nielsen, M.S., Jacobsen, C., Kliemannel, M., Schwarz, E., Willnow, T.E., Hempstead, B.L. and Petersen, C.M. (2004) Sortilin Is Essential for ProNGF-Induced Neuronal Cell Death. Nature, 427, 843-848.
http://dx.doi.org/10.1038/nature02319
[22] Khatib, A.M., Siegfried, G., Chrétien, M., Metrakos, P. and Seidah, N.G. (2002) Proprotein Convertases in Tumor Progression and Malignancy: Novel Targets in Cancer Therapy. The American Journal of Pathology, 160, 1921-1935.
http://dx.doi.org/10.1016/S0002-9440(10)61140-6
[23] Seidah, N.G. and Chrétien, M. (1999) Proprotein and Prohormone Convertases: A Family of Subtilases Generating Diverse Bioactive Polypeptides. Brain Research, 848, 45-62.
http://dx.doi.org/10.1016/S0006-8993(99)01909-5
[24] Zhou, A., Webb, G., Zhu, X. and Steiner, D.F. (1999) Proteolytic Processing in the Secretory Pathway. Journal of Biological Chemistry, 274, 20745-20748.
http://dx.doi.org/10.1074/jbc.274.30.20745
[25] Dieni, S., Matsumoto, T., Dekkers, M., Rauskolb, S., Ionescu, M.S., Deogracias, R., Gundelfinger, E.D., Kojima, M., Nestel, S., Frotscher, M. and Barde, Y.A. (2012) BDNF and Its Pro-Peptide Are Stored in Presynaptic Dense Core Vesicles in Brain Neurons. The Journal of Cell Biology, 196, 775-788.
http://dx.doi.org/10.1083/jcb.201201038
[26] Jessop, D.S. (1999) Review: Central Non-Glucocorticoid Inhibitors of the Hypothalamo-Pituitary-Adrenal Axis. Journal of Endocrinology, 160, 169-180.
http://dx.doi.org/10.1677/joe.0.1600169
[27] Anastasia, A., Deinhardt, K., Chao, M.V., Will, N.E., Irmady, K., Lee, F.S., Hempstead, B.L. and Bracken, C. (2013) Val66Met Polymorphism of BDNF Alters Prodomain Structure to Induce Neuronal Growth Cone Retraction. Nature Communications, 4, 2490.
http://dx.doi.org/10.1038/ncomms3490
[28] Jeanneteau, F., Deinhardt, K., Miyoshi, G., Bennett, A.M. and Chao, M.V. (2010) The MAP Kinase Phosphatase MKP-1 Regulates BDNF-Induced Axon Branching. Nature Neuroscience, 13, 1373-1379.
http://dx.doi.org/10.1038/nn.2655
[29] Brondello, J.M., Pouysségur, J. and McKenzie, F.R. (1999) Reduced MAP Kinase Phosphatase-1 Degradation after p42/p44MAPK-Dependent Phosphorylation. Science, 286, 2514-2517.
http://dx.doi.org/10.1126/science.286.5449.2514
[30] Chao, M.V. and Hempstead, B.L. (1995) p75 and Trk: A Two-Receptor System. Trends in Neurosciences, 18, 321-326.
http://dx.doi.org/10.1016/0166-2236(95)93922-K
[31] Hempstead, B.L., Martin-Zanca, D., Kaplan, D.R., Parada, L.F. and Chao, M.V. (1991) High-Affinity NGF Binding Requires Coexpression of the trk Proto-Oncogene and the Low-Affinity NGF Receptor. Nature, 350, 678-683.
http://dx.doi.org/10.1038/350678a0
[32] Filbin, M.T. (2003) Myelin-Associated Inhibitors of Axonal Regeneration in the Adult Mammalian CNS. Nature Reviews Neuroscience, 4, 703-713.
http://dx.doi.org/10.1038/nrn1195
[33] Park, K.J., Grosso, C.A., Aubert, I., Kaplan, D.R. and Miller, F.D. (2010) p75NTR-Dependent, Myelin-Mediated Axonal Degeneration Regulates Neural Connectivity in the Adult Brain. Nature Neuroscience, 13, 559-566.
http://dx.doi.org/10.1038/nn.2513
[34] McAllister, A.K., Lo, D.C. and Katz, L.C. (1995) Neurotrophins Regulate Dendritic Growth in Developing Visual Cortex. Neuron, 15, 791-803.
http://dx.doi.org/10.1016/0896-6273(95)90171-X
[35] Suzuki, S., Numakawa, T., Shimazu, K., Koshimizu, H., Hara, T., Hatanaka, H., Mei, L., Lu, B. and Kojima, M. (2004) BDNF-Induced Recruitment of TrkB Receptor into Neuronal Lipid Rafts: Roles in Synaptic Modulation. The Journal of Cell Biology, 167, 1205-1215.
http://dx.doi.org/10.1083/jcb.200404106
[36] Deinhardt, K., Kim, T., Spellman, D.S., Mains, R.E., Eipper, B.A., Neubert, T.A., Chao, M.V. and Hempstead, B.L. (2011) Neuronal Growth Cone Retraction Relies on Proneurotrophin Receptor Signaling through Rac. Science Signaling, 4, ra82.
http://dx.doi.org/10.1126/scisignal.2002060
[37] Sun, Y., Lim, Y., Li, F., Liu, S., Lu, J.J., Haberberger, R., Zhong, J.H. and Zhou, X.F. (2012) ProBDNF Collapses Neurite Outgrowth of Primary Neurons by Activating RhoA. PLoS One, 7, 35883.
http://dx.doi.org/10.1371/journal.pone.0035883
[38] Cabelli, R.J., Hohn, A. and Shatz, C.J. (1995) Inhibition of Ocular Dominance Column Formation by Infusion of NT-4/5 or BDNF. Science, 267, 1662-1666.
http://dx.doi.org/10.1126/science.7886458
[39] Tyler, W.J. and Pozzo-Miller, L.D. (2001) BDNF Enhances Quantal Neurotransmitter Release and Increases the Number of Docked Vesicles at the Active Zones of Hippocampal Excitatory Synapses. The Journal of Neuroscience, 21, 4249-4958.
[40] Ji, Y., Pang, P.T., Feng, L. and Lu, B. (2005) Cyclic AMP Controls BDNF-Induced TrkB Phosphorylation and Dendritic Spine Formation in Mature Hippocampal Neurons. Nature Neuroscience, 8, 164-172.
http://dx.doi.org/10.1038/nn1381
[41] Michalski, B. and Fahnestock, M. (2003) Pro-Brain-Derived Neurotrophic Factor Is Decreased in Parietal Cortex in Alzheimer’s Disease. Molecular Brain Research, 111, 148-154.
http://dx.doi.org/10.1016/S0169-328X(03)00003-2
[42] Skeldal, S., Matusica, D., Nykjaer, A. and Coulson, E.J. (2011) Proteolytic Processing of the p75 Neurotrophin Receptor: A Prerequisite for Signalling? Neuronal Life, Growth and Death Signalling Are Crucially Regulated by Intra-Membrane Proteolysis and Trafficking of p75NTR. BioEssays, 33, 614-625.
http://dx.doi.org/10.1002/bies.201100036
[43] Woo, N.H., Teng, H.K., Siao, C.J., Chiaruttini, C., Pang, P.T., Milner, T.A., Hempstead, B.L. and Lu, B. (2005) Activation of p75NTR by ProBDNF Facilitates Hippocampal Long-Term Depression. Nature Neuroscience, 8, 1069-1077.
http://dx.doi.org/10.1038/nn1510
[44] Nagappan, G., Zaitsev, E., Senatorov, V.V., Yang, J., Hempstead, B.L. and Lu, B. (2009) Control of Extracellular Cleavage of ProBDNF by High Frequency Neuronal Activity. Proceedings of the National Academy of Sciences of the United States of America, 106, 1267-1272.
http://dx.doi.org/10.1073/pnas.0807322106
[45] Lessmann, V. and Brigadski, T. (2009) Mechanisms, Locations, and Kinetics of Synaptic BDNF Secretion: An Update. Neuroscience Research, 65, 11-22.
http://dx.doi.org/10.1016/j.neures.2009.06.004
[46] Holm, M.M., Nieto-Gonzalez, J.L., Vardya, I., Vaegter, C.B., Nykjaer, A. and Jensen, K. (2009) Mature BDNF, but Not ProBDNF, Reduces Excitability of Fast-Spiking Interneurons in Mouse Dentate Gyrus. The Journal of Neuroscience, 29, 12412-12418.
http://dx.doi.org/10.1523/JNEUROSCI.2978-09.2009
[47] Chevaleyre, V. and Castillo, P.E. (2003) Heterosy-naptic LTD of Hippocampal GABAergic Synapses: A Novel Role of Endocannabinoids in Regulating Excitability. Neuron, 38, 461-472.
http://dx.doi.org/10.1016/S0896-6273(03)00235-6
[48] Patterson, S.L., Abel, T., Deuel, T.A., Martin, K.C., Rose, J.C. and Kandel, E.R. (1996) Recombinant BDNF Rescues Deficits in Basal Synaptic Transmission and Hippocampal LTP in BDNF Knockout Mice. Neuron, 16, 1137-1145.
http://dx.doi.org/10.1016/S0896-6273(00)80140-3
[49] Korte, M., Carroll, P., Wolf, E., Brem, G., Thoenen, H. and Bonhoeffer, T. (1995) Hippocampal Long-Term Potentiation Is Impaired in Mice Lacking Brain-Derived Neurotrophic Factor. Proceedings of the National Academy of Sciences of the United States of America, 92, 8856-8860.
http://dx.doi.org/10.1073/pnas.92.19.8856
[50] Figurov, A., Pozzo-Miller, L.D., Olafsson, P., Wang, T. and Lu, B. (1996) Regulation of Synaptic Responses to High-Frequency Stimulation and LTP by Neurotrophins in the Hippocampus. Nature, 381, 706-709.
http://dx.doi.org/10.1038/381706a0
[51] Gottschalk, W.A., Jiang, H., Tartaglia, N., Feng, L., Figurov, A. and Lu, B. (1999) Signaling Mechanisms Mediating BDNF Modulation of Synaptic Plasticity in the Hippocampus. Learning & Memory, 6, 243-256.
[52] Jovanovic, J.N., Czernik, A.J., Fienberg, A.A., Greengard, P. and Sihra, T.S. (2000) Synapsins as Mediators of BDNF-Enhanced Neurotransmitter Release. Nature Neuroscience, 3, 323-329.
http://dx.doi.org/10.1038/73888
[53] Pozzo-Miller, L.D., Gottschalk, W., Zhang, L., McDermott, K., Du, J., Gopalakrishnan, R., Oho, C., Sheng, Z.H. and Lu, B. (1999) Impairments in High-Frequency Transmission, Synaptic Vesicle Docking, and Synaptic Protein Distribution in the Hippocampus of BDNF Knockout Mice. The Journal of Neuroscience, 19, 4972-4983.
[54] Chen, G., Kolbeck, R., Barde, Y.A., Bonhoeffer, T. and Kossel, A. (1999) Relative Contribution of Endogenous Neurotrophins in Hippocampal Long-Term Potentiation. The Journal of Neuroscience, 19, 7983-7990.
[55] Kang, H., Welcher, A.A., Shelton, D. and Schuman, E.M. (1997) Neurotrophins and Time: Different Roles for TrkB Signaling in Hippocampal Long-Term Potentiation. Neuron, 19, 653-664.
http://dx.doi.org/10.1016/S0896-6273(00)80378-5
[56] Kovalchuk, Y., Hanse, E., Kafitz, K.W. and Konnerth, A. (2002) Postsynaptic Induction of BDNF-Mediated Long-Term Potentiation. Science, 295, 1729-1734.
http://dx.doi.org/10.1126/science.1067766
[57] Levine, E.S., Crozier, R.A., Black, I.B. and Plummer, M.R. (1998) Brain-Derived Neurotrophic Factor Modulates Hippocampal Synaptic Transmission by Increasing N-Methyl-D-Aspartic Acid Receptor Activity. Proceedings of the National Academy of Sciences of the United States of America, 95, 10235-10239.
http://dx.doi.org/10.1073/pnas.95.17.10235
[58] Korte, M., Kang, H., Bonhoeffer, T. and Schuman, E. (1998) A Role for BDNF in the Late-Phase of Hippocampal Long-Term Potentiation. Neuropharmacology, 37, 553-559.
http://dx.doi.org/10.1016/S0028-3908(98)00035-5
[59] Pang, P.T., Teng, H.K., Zaitsev, E., Woo, N.T., Sakata, K., Zhen, S., Teng, K.K., Yung, W.H., Hempstead, B.L. and Lu, B. (2004) Cleavage of ProBDNF by tPA/Plasmin Is Essential for Long-Term Hippocampal Plasticity. Science, 306, 487-491.
http://dx.doi.org/10.1126/science.1100135
[60] Minichiello, L., Calella, A.M., Medina, D.L., Bonhoeffer, T., Klein, R. and Korte, M. (2002) Mechanism of TrkB-Mediated Hippocampal Long-Term Potentiation. Neuron, 36, 121-137.
http://dx.doi.org/10.1016/S0896-6273(02)00942-X
[61] Patterson, S.L., Grover, L.M., Schwartzkroin, P.A. and Bothwell, M. (1992) Neurotrophin Expression in Rat Hippocampal Slices: A Stimulus Paradigm Inducing LTP in CA1 Evokes Increases in BDNF and NT-3 mRNAs. Neuron, 9, 1081-1088.
http://dx.doi.org/10.1016/0896-6273(92)90067-N
[62] Castrén, E., Pitkänen, M., Sirviö, J., Parsadanian, A., Lindholm, D., Thoenen, H. and Riekkinen, P.J. (1993) The Induction of LTP Increases BDNF and NGF mRNA but Decreases NT-3 mRNA in the Dentate Gyrus. NeuroReport, 4, 895-898.
http://dx.doi.org/10.1097/00001756-199307000-00014
[63] Silhol, M., Arancibia, S., Maurice, T. and Tapia-Arancibia, L. (2007) Spatial Memory Training Modifies the Expression of Brain-Derived Neurotrophic Factor Tyrosine Kinase Receptors in Young and Aged Rats. Neuroscience, 146, 962-973.
http://dx.doi.org/10.1016/j.neuroscience.2007.02.013
[64] Tongiorgi, E., Righi, M. and Cattaneo, A. (1997) Activity-Dependent Dendritic Targeting of BDNF and TrkB mRNAs in Hippocampal Neurons. Journal of Neuroscience, 17, 9492-9505.
[65] Simonato, M., Bregola, G., Armellin, M., Del Piccolo, P., Rodi, D., Zucchini, S. and Tongiorgi, E. (2002) Dendritic Targeting of mRNAs for Plasticity Genes in Experimental Models of Temporal Lobe Epilepsy. Epilepsia, 43, 153-158. http://dx.doi.org/10.1046/j.1528-1157.43.s.5.32.x
[66] Chiaruttini, C., Sonego, M., Baj, G., Simonato, M. and Tongiorgi, E. (2008) BDNF mRNA Splice Variants Display Activity-Dependent Targeting to Distinct Hippocampal Laminae. Molecular and Cellular Neuroscience, 37, 11-19.
http://dx.doi.org/10.1016/j.mcn.2007.08.011
[67] Kang, H. and Schuman, E.M. (1995) Long-Lasting Neurotrophin-Induced Enhancement of Synaptic Transmission in the Adult Hippocampus. Science, 267, 1658-1662.
http://dx.doi.org/10.1126/science.7886457
[68] Kang, H. and Schuman, E.M. (1996) A Requirement for Local Protein Synthesis in Neurotrophin-Induced Hippocampal Synaptic Plasticity. Science, 273, 1402-1406.
http://dx.doi.org/10.1126/science.273.5280.1402
[69] Aakalu, G., Smith, W.B., Nguyen, N., Jiang, C. and Schuman, E.M. (2001) Dynamic Visualization of Local Protein Synthesis in Hippocampal Neurons. Neuron, 30, 489-502.
http://dx.doi.org/10.1016/S0896-6273(01)00295-1
[70] Schratt, G.M., Nigh, E.A., Chen, W.G., Hu, L. and Greenberg, M.E. (2004) BDNF Regulates the Translation of a Select Group of mRNAs by a Mammalian Target of Rapamycin-Phosphatidylinositol 3-Kinase-Dependent Pathway during Neuronal Development. The Journal of Neuroscience, 24, 7366-7377.
http://dx.doi.org/10.1523/JNEUROSCI.1739-04.2004
[71] Schratt, G.M., Tuebing, F., Nigh, E.A., Kane, C.G., Sabatini, M.E., Kiebler, M. and Greenberg, M.E. (2006) A Brain-Specific MicroRNA Regulates Dendritic Spine Development. Nature, 439, 283-289.
http://dx.doi.org/10.1038/nature04367
[72] Takei, N., Inamura, N., Kawamura, M., Namba, H., Hara, K., Yonezawa, K. and Nawa, H. (2004) Brain-Derived Neurotrophic Factor induces Mammalian Target of Rapamycin-Dependent Local Activation of Translation Machinery and Protein Synthesis in Neuronal Dendrites. The Journal of Neuroscience, 24, 9760-9769.
http://dx.doi.org/10.1523/JNEUROSCI.1427-04.2004
[73] Yin, Y., Edelman, G.M. and Vanderklish, P.W. (2002) The Brain-Derived Neurotrophic Factor Enhances Synthesis of Arc in Synaptoneurosomes. Proceedings of the National Academy of Sciences of the United States of America, 99, 2368-2373.
http://dx.doi.org/10.1073/pnas.042693699
[74] Timmusk, T., Palm, K., Metsis, M., Reintam, T., Paalme, V., Saarma, M. and Persson, H. (1993) Multiple Promoters Direct Tissue-Specific Expression of the Rat BDNF Gene. Neuron, 10, 475-489.
http://dx.doi.org/10.1016/0896-6273(93)90335-O
[75] Aid, T., Kazantseva, A., Piirsoo, M., Palm, K. and Timmusk, T. (2007) Mouse and Rat BDNF Gene Structure and Expression Revisited. The Journal of Neuroscience Research, 85, 525-535.
http://dx.doi.org/10.1002/jnr.21139
[76] Pruunsild, P., Kazantseva, A., Aid, T., Palm, K. and Timmusk, T. (2007) Dissecting the Human BDNF Locus: Bidirectional Transcription, Complex Splicing, and Multiple Promoters. Genomics, 90, 397-406.
http://dx.doi.org/10.1016/j.ygeno.2007.05.004
[77] Tao, X., West, A.E., Chen, W.G., Corfas, G. and Greenberg, M.E. (2002) A Calcium-Responsive Transcription Factor, CaRF, That Regulates Neuronal Activity-Dependent Expression of BDNF. Neuron, 33, 383-395.
http://dx.doi.org/10.1016/S0896-6273(01)00561-X
[78] Metsis, M., Timmusk, T., Arenas, E. and Persson, H. (1993) Differential Usage of Multiple Brain-Derived Neurotrophic Factor Promoters in the Rat Brain Following Neuronal Activation. Proceedings of the National Academy of Sciences of the United States of America, 90, 8802-8806.
http://dx.doi.org/10.1073/pnas.90.19.8802
[79] Hong, E.J., McCord, A.E. and Greenberg, M.E. (2008) A Biological Function for the Neuronal Activity-Dependent Component of Bdnf Transcription in the Development of Cortical Inhibition. Neuron, 60, 610-624.
http://dx.doi.org/10.1016/j.neuron.2008.09.024
[80] Sakata, K., Woo, N.H., Martinowich, K., Greene, J.S., Schloesser, R.J., Shen, L. and Lu, B. (2009) Critical Role of Promoter IV-Driven BDNF Transcription in GABAergic Transmission and Synaptic Plasticity in the Prefrontal Cortex. Proceedings of the National Academy of Sciences of the United States of America, 106, 5942-5947.
http://dx.doi.org/10.1073/pnas.0811431106
[81] Pruunsild, P., Sepp, M., Orav, E., Koppel, I. and Timmusk, T. (2011) Identification of Cis-Elements and Transcription Factors Regulating Neuronal Activity-Dependent Transcription of Human BDNF Gene. The Journal of Neuroscience, 31, 3295-3308.
http://dx.doi.org/10.1523/JNEUROSCI.4540-10.2011
[82] An, J.J., Gharami, K., Liao, G.Y., Woo, N.H., Lau, A.G., Vanevski, F., Torre, E.R., Jones, K.R., Feng, Y., Lu, B. and Xu, B. (2008) Distinct Role of Long 3’UTR BDNF mRNA in Spine Morphology and Synaptic Plasticity in Hippocampal Neurons. Cell, 134, 175-187.
http://dx.doi.org/10.1016/j.cell.2008.05.045
[83] Baj, G., Leone, E., Chao, M.V. and Tongiorgi, E. (2011) Spatial Segregation of BDNF Transcripts Enables BDNF to Differentially Shape Distinct Dendritic Compartments. Proceedings of the National Academy of Sciences of the United States of America, 108, 16813-16818.
[84] Mahmoudi, S., Henriksson, S., Corcoran, M., Méndez-Vidal, C., Wiman, K.G. and Farnebo, M. (2009) Wrap53, A Natural p53 Antisense Transcript Required for p53 Induction upon DNA Damage. Molecular Cell, 33, 462-471.
[85] Faghihi, M.A., Modarresi, F., Khalil, A.M., Wood, D.E., Sahagan, B.G., Morgan, T.E., Finch, C.E., St Laurent 3rd., G., Kenny, P.J. and Wahlestedt, C. (2008) Expression of a Noncoding RNA Is Elevated in Alzheimer’s Disease and Drives Rapid Feed-Forward Regulation of Beta-Secretase. Nature Medicine, 14, 723-730.
[86] Modarresi, F., Faghihi, M.A., Lopez-Toledano, M.A., Fatemi, R.P., Magistri, M., Brothers, S.P., Van der Brug, M.P. and Wahlestedt, C. (2012) Inhibition of Natural Antisense Transcripts in Vivo Results in Gene-Specific Transcriptional Upregulation. Nature Biotechnology, 30, 453-459.
http://dx.doi.org/10.1038/nbt.2158
[87] Peter, C.J. and Akbarian, S. (2011) Balancing Histone Methylation Activities in Psychiatric Disorders. Trends in Molecular Medicine, 17, 372-379.
http://dx.doi.org/10.1016/j.molmed.2011.02.003
[88] Barker, P.A. (2009) Whither ProBDNF? Nature Neuroscience, 12, 105-106.
http://dx.doi.org/10.1038/nn0209-105
[89] Greenberg, M.E., Xu, B., Lu, B. and Hempstead, B.L. (2009) New Insights in the Biology of BDNF Synthesis and Release: Implications in CNS Function. The Journal of Neuroscience, 29, 12764-12767.
http://dx.doi.org/10.1523/JNEUROSCI.3566-09.2009
[90] Matsumoto, T., Rauskolb, S., Polack, M., Klose, J., Kolbeck, R., Korte, M. and Barde, Y.A. (2008) Biosynthesis and Processing of Endogenous BDNF: CNS Neurons Store and Secrete BDNF, Not Pro-BDNF. Nature Neuroscience, 11, 131-133.
http://dx.doi.org/10.1038/nn2038
[91] Yang, F., Je, H.S., Ji, Y., Nagappan, G., Hempstead, B. and Lu, B. (2009) Pro-BDNF-Induced Synaptic Depression and Retraction at Developing Neuromuscular Synapses. The Journal of Cell Biology, 185, 727-741.
http://dx.doi.org/10.1083/jcb.200811147
[92] Kohara, K., Kitamura, A., Morishima, M. and Tsumoto, T. (2001) Activity-Dependent Transfer of Brain-Derived Neurotrophic Factor to Postsynaptic Neurons. Science, 291, 2419-2423.
http://dx.doi.org/10.1126/science.1057415
[93] Suter, U., Heymach, J.V. and Shooter, E.M. (1991) Two Conserved Domains in the NGF Propeptide Are Necessary and Sufficient for the Biosynthesis of Correctly Processed and Biologically Active NGF. The EMBO Journal, 10, 2395-2400.
[94] Rattenholl, A., Ruoppolo, M., Flagiello, A., Monti, M., Vinci, F., Marino, G., Lilie, H., Schwarz, E. and Rudolph, R. (2001) Pro-Sequence Assisted Folding and Disulfide Bond Formation of Human Nerve Growth Factor. Journal of Molecular Biology, 305, 523-533.
http://dx.doi.org/10.1006/jmbi.2000.4295
[95] Chen, Z.Y., Patel, P.D., Sant, G., Meng, C.X., Teng, K.K., Hempstead, B.L. and Lee, F.S. (2004) Variant Brain-Derived Neurotrophic Factor (BDNF) (Met66) Alters the Intracellular Trafficking and Activity-Dependent Secretion of Wild-Type BDNF in Neurosecretory Cells and Cortical Neurons. The Journal of Neuroscience, 24, 4401-4411.
http://dx.doi.org/10.1523/JNEUROSCI.0348-04.2004
[96] Lou, H., Kim, S.K., Zaitsev, E., Snell, C.R., Lu, B. and Loh, Y.P. (2005) Sorting and Activity-Dependent Secretion of BDNF Require Interaction of a Specific Motif with the Sorting Receptor Carboxypeptidase. Neuron, 45, 245-255.
http://dx.doi.org/10.1016/j.neuron.2004.12.037
[97] Chen, Z.Y., Ieraci, A., Teng, H., Dall, H., Meng, C.X., Herrera, D.G., Nykjaer, A., Hempstead, B.L. and Lee, F.S. (2005) Sortilin Controls Intracellular Sorting of Brain-Derived Neurotrophic Factor to the Regulated Secretory Pathway. The Journal of Neuroscience, 25, 6156-6166.
http://dx.doi.org/10.1523/JNEUROSCI.1017-05.2005
[98] Rattenholl, A., Lilie, H., Grossmann, A., Stern, A., Schwarz, E. and Rudolph, R. (2001) The Pro-Sequence Facilitates Folding of Human Nerve Growth Factor from Escherichia Coli Inclusion Bodies. European Journal of Biochemistry, 268, 3296-3303.
http://dx.doi.org/10.1046/j.1432-1327.2001.02232.x
[99] Toyooka, K., Asama, K., Watanabe, Y., Muratake, T., Takahashi, M., Someya, T. and Nawa, H. (2002) Decreased Levels of Brain-Derived Neurotrophic Factor in Serum of Chronic Schizophrenic Patients. Psychiatry Research, 110, 249-257.
http://dx.doi.org/10.1016/S0165-1781(02)00127-0
[100] Karege, F., Perret, G., Bondolfi, G., Schwald, M., Bertschy, G. and Aubry, J.M. (2002) Decreased Serum Brain-Derived Neurotrophic Factor Levels in Major Depressed Patients. Psychiatry Research, 109, 143-148.
http://dx.doi.org/10.1016/S0165-1781(02)00005-7
[101] Shimizu, E., Hashimoto, K., Okamura, N., Koike, K., Komatsu, N., Kumakiri, C., Nakazato, M., Watanabe, H., Shinoda, N., Okada, S. and Iyo, M. (2003) Alterations of Serum Levels of Brain-Derived Neurotrophic Factor (BDNF) in Depressed Patients with or without Antidepressants. Biological Psychiatry, 54, 70-75.
http://dx.doi.org/10.1016/S0006-3223(03)00181-1
[102] Sen, S., Duman, R. and Sanacora, G. (2008) Serum Brain-Derived Neurotrophic Factor, Depression, and Antidepressant Medications: Meta-Analyses and Implications. Biological Psychiatry, 64, 527-532.
http://dx.doi.org/10.1016/j.biopsych.2008.05.005
[103] Matsuoka, Y., Nishi, D., Noguchi, H., Kim, Y. and Hashimoto, K. (2013) Longitudinal Changes in Serum Brain-Derived Neurotrophic Factor in Accident Survivors with Posttraumatic Stress Disorder. Neuropsychobiology, 68, 44-50.
http://dx.doi.org/10.1159/000350950
[104] Dell’Osso, L., Carmassi, C., Del Debbio, A., Catena Dell’Osso, M., Bianchi, C., Da Pozzo, E., Origlia, N., Domenici, L., Massimetti, G., Marazziti, D. and Piccinni, A. (2009) Brain-Derived Neurotrophic Factor Plasma Levels in Patients Suffering from Post-Traumatic Stress Disorder. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 899-902.
http://dx.doi.org/10.1016/j.pnpbp.2009.04.018
[105] Fujimura, H., Altar, C.A., Chen, R., Nakamura, T., Nakahashi, T., Kambayashi, J., Sun, B. and Tandon, N.N. (2002) Brain-Derived Neurotrophic Factor Is Stored in Human Platelets and Released by Agonist Stimulation. Thrombosis and Haemostasis, 87, 728-734.
[106] Lee, B.H. and Kim, Y.K. (2009) Reduced Platelet BDNF Level in Patients with Major Depression. Progress in Neuro-Psychopharmacology & Biological Psychiatry, 33, 849-853.
[107] Molendijk, M.L., Haffmans, J.P., Bus, B.A., Spinhoven, P., Penninx, B.W., Prickaerts, J., Oude Voshaar, R.C. and Elzinga, B.M. (2012) Serum BDNF Concentrations Show Strong Seasonal Variation and Correlations with the Amount of Ambient Sunlight. PLoS One, 7, 48046.
http://dx.doi.org/10.1371/journal.pone.0048046

LUEWW140916