The Novel Interaction Model of Dark Energy and Dark Matter

Read  full  paper  at:http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53885#.VNr28SzQrzE

The paper introduces Planck scale into the Newtonian law of gravity for the model simplification. The terms of Newtonian gravitational force can be separated into two parts, namely Dark Matter and Dark Energy respectively. They are inverse relation to the distance. In the very early Universe, the novel model gives the sum “attractive force” of all matters in the cosmos. It indicates that Inflationary Universe firstly and then Universe expands slowly on condition that the accelerated velocity is slowing down for ever. In the galaxy scale, the paper gets the local “attractive force” of different galaxies by using the novel interaction model. It shows the intercommunity property in the formation process of different galaxies, where the matter suppresses firstly, sharp inflates secondly, slowly expands finally. Otherwise, the novel interaction model solves the problem about the flat rotation curves of galaxy by considering the change of the mass ratio of Dark Energy and Dark Matter. All results of simulation show that the core of our Universe is hollow now.

Cite this paper

Hu, D. (2015) The Novel Interaction Model of Dark Energy and Dark Matter. Journal of Modern Physics, 6, 101-105. doi: 10.4236/jmp.2015.62013.

References

[1] Wheeler, J.A. (1963) Relativity, Groups and Topology. Gordon & Breach, New York.
[2] Ashtekar, A., Rovelli, C. and Smolin, L. (1992) Physical Review Letters, 69, 237-240.
http://dx.doi.org/10.1103/PhysRevLett.69.237
[3] Ellis, J., Mavromatos, N. and Nanopoulos, D.V. (1992) Physics Letters B, 293, 37-48.
http://dx.doi.org/10.1016/0370-2693(92)91478-R
[4] Hawking, S.W., Page, D.N. and Pope, C.N. (1980) Nuclear Physics B, 170, 283-306.
http://dx.doi.org/10.1016/0550-3213(80)90151-0
[5] Amelino-Camelia, G. (2007) Nature, 448, 257.
http://dx.doi.org/10.1038/448257a
[6] Tohline, J.E. (1984) Annals of the New York Academy of Sciences, 422, 390-390.
http://dx.doi.org/10.1111/j.1749-6632.1984.tb23408.x
[7] Bissantz, N., Englmaier, P. and Gerhard, O. (2003) Monthly Notices of the Royal Astronomical Society, 340, 949.
http://dx.doi.org/10.1046/j.1365-8711.2003.06358.x
[8] Famaey, B. and Binney, J. (2005) Monthly Notices of the Royal Astronomical Society, 363,603.
http://dx.doi.org/10.1111/j.1365-2966.2005.09474.x
[9] Hawking, S. (1987) Physica Scripta, T15, 202.
[10] Hawking, S.W. and Ellis, G.F.R. (1973) The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge.
[11] Caldwell, R. and Kamionkowski, M. (2009) Nature, 458, 587-589.
http://dx.doi.org/10.1038/458587a
[12] Carroll, S. (2002) Nature, 419, 784-785.
http://dx.doi.org/10.1038/419784a
[13] Spergel, D.N., et al. (2003) The Astrophysical Journal Supplement, 148, 175-194.
[14] Contaldi, C.R., Hoekstra, H. and Lewis, A. (2003) Physical Review Letters, 90, Article ID: 221303.
http://dx.doi.org/10.1103/PhysRevLett.90.221303
[15] Tegmark, M., et al. (2004) The Astrophysical Journal, 606, 702-740.
http://dx.doi.org/10.1086/382125
[16] Sanchez, A.G., Baugh, C.M., Percival, W.J., Peacock, J.A., Padilla, N.D., Cole, S., Frenk, C.S. and Norberg, P. (2006) Monthly Notices of the Royal Astronomical Society, 366, 189-207.
http://dx.doi.org/10.1111/j.1365-2966.2005.09833.x
[17] Seljak, U., et al. (2005) Physical Review D, 71, Article ID: 103515.
http://dx.doi.org/10.1103/PhysRevD.71.103515                                                   eww150211lx
Advertisements

The Novel Interaction Model of Dark Energy and Dark Matter

Read  full  paper  at:http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53885#.VNnCDCzQrzE

The paper introduces Planck scale into the Newtonian law of gravity for the model simplification. The terms of Newtonian gravitational force can be separated into two parts, namely Dark Matter and Dark Energy respectively. They are inverse relation to the distance. In the very early Universe, the novel model gives the sum “attractive force” of all matters in the cosmos. It indicates that Inflationary Universe firstly and then Universe expands slowly on condition that the accelerated velocity is slowing down for ever. In the galaxy scale, the paper gets the local “attractive force” of different galaxies by using the novel interaction model. It shows the intercommunity property in the formation process of different galaxies, where the matter suppresses firstly, sharp inflates secondly, slowly expands finally. Otherwise, the novel interaction model solves the problem about the flat rotation curves of galaxy by considering the change of the mass ratio of Dark Energy and Dark Matter. All results of simulation show that the core of our Universe is hollow now.

Cite this paper

Hu, D. (2015) The Novel Interaction Model of Dark Energy and Dark Matter. Journal of Modern Physics, 6, 101-105. doi: 10.4236/jmp.2015.62013.

References

[1] Wheeler, J.A. (1963) Relativity, Groups and Topology. Gordon & Breach, New York.
[2] Ashtekar, A., Rovelli, C. and Smolin, L. (1992) Physical Review Letters, 69, 237-240.
http://dx.doi.org/10.1103/PhysRevLett.69.237
[3] Ellis, J., Mavromatos, N. and Nanopoulos, D.V. (1992) Physics Letters B, 293, 37-48.
http://dx.doi.org/10.1016/0370-2693(92)91478-R
[4] Hawking, S.W., Page, D.N. and Pope, C.N. (1980) Nuclear Physics B, 170, 283-306.
http://dx.doi.org/10.1016/0550-3213(80)90151-0
[5] Amelino-Camelia, G. (2007) Nature, 448, 257.
http://dx.doi.org/10.1038/448257a
[6] Tohline, J.E. (1984) Annals of the New York Academy of Sciences, 422, 390-390.
http://dx.doi.org/10.1111/j.1749-6632.1984.tb23408.x
[7] Bissantz, N., Englmaier, P. and Gerhard, O. (2003) Monthly Notices of the Royal Astronomical Society, 340, 949.
http://dx.doi.org/10.1046/j.1365-8711.2003.06358.x
[8] Famaey, B. and Binney, J. (2005) Monthly Notices of the Royal Astronomical Society, 363,603.
http://dx.doi.org/10.1111/j.1365-2966.2005.09474.x
[9] Hawking, S. (1987) Physica Scripta, T15, 202.
[10] Hawking, S.W. and Ellis, G.F.R. (1973) The Large-Scale Structure of Space-Time. Cambridge University Press, Cambridge.
[11] Caldwell, R. and Kamionkowski, M. (2009) Nature, 458, 587-589.
http://dx.doi.org/10.1038/458587a
[12] Carroll, S. (2002) Nature, 419, 784-785.
http://dx.doi.org/10.1038/419784a
[13] Spergel, D.N., et al. (2003) The Astrophysical Journal Supplement, 148, 175-194.
[14] Contaldi, C.R., Hoekstra, H. and Lewis, A. (2003) Physical Review Letters, 90, Article ID: 221303.
http://dx.doi.org/10.1103/PhysRevLett.90.221303
[15] Tegmark, M., et al. (2004) The Astrophysical Journal, 606, 702-740.
http://dx.doi.org/10.1086/382125
[16] Sanchez, A.G., Baugh, C.M., Percival, W.J., Peacock, J.A., Padilla, N.D., Cole, S., Frenk, C.S. and Norberg, P. (2006) Monthly Notices of the Royal Astronomical Society, 366, 189-207.
http://dx.doi.org/10.1111/j.1365-2966.2005.09833.x
[17] Seljak, U., et al. (2005) Physical Review D, 71, Article ID: 103515.
http://dx.doi.org/10.1103/PhysRevD.71.103515                       eww150210lx

A Possible Alternative to the Accelerating Universe

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53590#.VMnk6izQrzE

Author(s)

Frank R. Tangherlini*

Affiliation(s)

P.O. Box 928211, San Diego, CA 92192, USA.

ABSTRACT

A possible alternative to the accelerating universe is proposed that shows that the diminished brightness of the high red shift Type Ia supernovae can be explained by assuming light travels with reduced speed through the dark energy of intergalactic space. It is also shown that support for the  model from baryon acoustic oscillations (BAO) studies can also be accommodated by the model. Two tables are given that compare the model with apparent magnitude differences and length differences between the  universe and the Einstein-de Sitter universe, and they show that the model yields these differences quite accurately. A third table comparing the apparent magnitude difference between  and a universe with  is also given. It exhibits poor agreement with the model, and hence the model favors the need for dark energy, albeit without negative pressure. As a new approach to the “why now?” problem, and its apparent challenge to the Copernican principle, it is proposed that dark energy is a condensed form of dark matter caused by expansion cooling, rather than a different substance. A motivation for an alternative to  is presented based on a principle that rules out the cosmological term.

KEYWORDS

Accelerating Universe, Alternative Model, Speed of Light, Dark Energy

Cite this paper

Tangherlini, F. (2015) A Possible Alternative to the Accelerating Universe. Journal of Modern Physics, 6, 78-87. doi: 10.4236/jmp.2015.61010.

References

[1] Perlmutter, S., et al. (1998) Nature, 391, 51-54. (Erratum, 392, 311).
[2] Perlmutter, S., et al. (1999) Astrophysical Journal, 517, 565-586.
http://dx.doi.org/10.1086/307221
[3] Riess, A., et al. (1998) Astronomical Journal, 116, 1009-1038.
http://dx.doi.org/10.1086/300499
[4] Schmidt, B., et al. (1998) Astrophysical Journal, 507, 46-63.
http://dx.doi.org/10.1086/306308
[5] Riess, A., et al. (2000) Astrophysical Journal, 536, 62-67.
http://dx.doi.org/10.1086/308939
[6] Bondi, H. (1952) Cosmology. Cambridge University Press, Cambridge, 13.
[7] Uzan, J.-P. (2010) Dark Energy, Gravitation, and the Copernican principle. In: Ruiz-Lapuente, P., Ed., Dark Energy, Cambridge University Press, Cambridge, 5-6.
http://dx.doi.org/10.1017/CBO9781139193627.002
[8] Riess, A., et al. (2001) Astrophysical Journal, 560, 49-71.
http://dx.doi.org/10.1086/322348
[9] Tangherlini, F.R. (1991) Nuovo Cimento B, 106, 123-146.
[10] Tonry, J.L., et al. (2003) Astrophysical Journal, 594. 1-24.
http://dx.doi.org/10.1086/376865
[11] Ade, P.A.R., Aghanim, N., Arnaud, M., et al. (2014) Astronomy and Astrophysics, 571, 66 p.
[12] Quigg, C. (2013) Gauge Theories of the Strong, Weak, and Electromagnetic Interactions. 2nd Edition, Princeton University Press, Princeton, 246-247.
[13] Zee, A. (2010) Quantum Field Theory in a Nutshell. 2nd Edition, Princeton University Press, Princeton, 448-451.
[14] Wess, J. and Zumino, B. (1974) Nuclear Physics B, 70, 39-50.
http://dx.doi.org/10.1016/0550-3213(74)90355-1
[15] Casimir, H.B.G. (1948) Proceedings of the Royal Netherlands Academy of Arts and Sciences Series B, 51, 793-795.
[16] Lamoreaux, S.K. (1997) Physical Review Letters, 78, 5-8.
http://dx.doi.org/10.1103/PhysRevLett.78.5
[17] Anderson, L., et al. (2011) Monthly Notices of the Royal Astronomical Society, 000, 2-33.
[18] Eisenstein, D.J., Zehavi, I., Hogg, D.W., Scoccimarro, R., Blanton, M.R., Nichol, R.C., et al. (2005) Astrophysical Journal, 633, 560-574.
http://dx.doi.org/10.1086/466512
[19] Cooray, A., Hu, W., Huterer, D. and Jeffre, M. (2001) Astrophysical Journal, 557, L7-L10.
http://dx.doi.org/10.1086/323323
[20] Etherington, I.M.H. (2007) General Relativity and Gravitation, 39, 1055-1067.
http://dx.doi.org/10.1080/14786443309462220                                                        eww150129lx
[21] Kolb, R. (2006) Report of the Dark Energy Task Force. Fermi National Accelerator Laboratory, Batavia, IL, 1-123.

Metal-Like Gravity and Its Cosmological Applications

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52761#.VKNQOsnQrzE

Author(s)

ABSTRACT

Modification to Newton gravitational interaction is presented. It provides an understanding of a novel universal gravitational field of particle origin that defines alternative attributes to elementary constituents of matter particles and the gravitational interactions between them. It investigates gravitational relationship between two types of mass. The model assigns Coulombic gravitational interaction to DM particles and baryons by attributing self-antigravity to both normal matter and dark matter (DM). It defines the interaction as like particles repel while unlike particles attract. Metal-like force is proposed where same type mass (baryons) are gravitationally attracted to each other when a sea of DM particles are attracted to them and glue them together analogous to a metal bond. At close range, other dominant forces take place such as electromagnetic force. In light of this model, intergalactic self-repulsive DM particles are proposed to result in accelerating expansion of the universe. The model produces flat rotational curves for spiral galaxies and provides a physical explanation to MOND theory.

Cite this paper

Barghout, K. (2014) Metal-Like Gravity and Its Cosmological Applications. Journal of Modern Physics, 5, 2174-2183. doi: 10.4236/jmp.2014.518211.

References

[1] Hajdukovic, D.S. (2012) Quantum Vacuum and Virtual Gravitational Dipoles: The Solution to the Dark Energy Problem? arxiv/1201.4594
[2] Morrison, P. (1958) American Journal of Physics, 26, 358-368.
http://dx.doi.org/10.1119/1.1996159
[3] Schiff, L.I. (1958) Physical Review Letters, 1, 254-255.
http://dx.doi.org/10.1103/PhysRevLett.1.254
[4] Schiff, L.I. (1959) Proceedings of the National Academy of Sciences, 45, 69. http://dx.doi.org/10.1073/pnas.45.1.69
[5] Chardin, G. and Rax, J.M. (1992) Physics Letters B, 282, 256-262.
http://dx.doi.org/10.1016/0370-2693(92)90510-B
[6] Zwicky, F. (1937) Astrophysical Journal, 86, 217.
http://dx.doi.org/10.1086/143864
[7] Oort, J. (1932) Bulletin of the Astronomical Institutes of the Netherlands, 6, 249.
[8] Milgrom, M. (1983) Astrophysical Journal, 270, 365-370.
http://dx.doi.org/10.1086/161130
[9] Trimble, V. (1987) Annual Review of Astronomy and Astrophysics. 25, 425-472.
http://dx.doi.org/10.1146/annurev.aa.25.090187.002233
[10] Bergstrom, L. (2000) Reports on Progress in Physics, 63, 793-841.
http://dx.doi.org/10.1088/0034-4885/63/5/2r3
[11] Hoekstra, H., Yee, H.K.C. and Gladders, M.D. (2004) The Astrophysical Journal, 606, 67-77.
http://dx.doi.org/10.1086/382726
[12] Bertone, G. and Hooper, S.J. (2005) Physics Reports, 405, 279-390.
http://dx.doi.org/10.1016/j.physrep.2004.08.031
[13] Buote, D.A., Jeltema, T.E., Canizares, C.R. and Garmire, G.P. (2002) The Astrophysical Journal, 577, 183-196.
http://dx.doi.org/10.1086/342158
[14] Gavazzi, R. (2002) New Astronomy Review, 46, 783-789.
http://dx.doi.org/10.1016/S1387-6473(02)00246-4
[15] Gentile, G., Famaey, B., Zhao, H.S. and Salucci, P. (2009) Nature, 461, 627-628.
http://dx.doi.org/10.1038/nature08437
[16] Rubin, V.C., Thonnard, N. and Ford, W.K. (1980) The Astrophysical Journal, 238, 471.
http://dx.doi.org/10.1086/158003
[17] Bosma, A. (1981) The Astrophysical Journal, 86, 1791-1724. http://dx.doi.org/10.1086/113062
[18] Palunasand, P. and Williams, T.B. (2000) The Astrophysical Journal, 120, 2884-2903.
http://dx.doi.org/10.1086/316878
[19] McGaugh, S.S. (2004) The Astrophysical Journal, 609, 652-666.
http://dx.doi.org/10.1086/421338
[20] Salucci, P. and Burkert, A. (2000) The Astrophysical Journal, 537, L9-L12.
http://dx.doi.org/10.1086/312747
[21] Graham, A.W., Merritt, D. and Diemand, J. (2006) The Astronomical Journal, 132, 2711-2716.
[22] Sofue, Y., Tutui, Y., Honma, M., Tomita, A., Takamiya, T., Koda, J. and Takeda, Y. (1999) The Astrophysical Journal, 523, 136-146.
http://dx.doi.org/10.1086/307731
[23] Matthews, L.D., Gallagher III, J.S. and Van Driel, W. (1999) Astronomical Journal, 118, 2751-2766.
http://dx.doi.org/10.1086/301128                                                                                                  eww141231lx

From Highly Structured E-Infinity Rings and Transfinite Maximally Symmetric Manifolds to the Dark Energy Density of the Cosmos

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52405#.VJOZ5cCAM4

Author(s)

ABSTRACT

Starting from well established results in pure mathematics, mainly transfinite set theory, E-infinity algebra over operads, fuzzy manifolds and fuzzy Lie symmetry groups, we construct an exact Weyl scaling for the highly structured E-infinity rings corresponding to E-infinity theory of high energy physics. The final result is an exact expression for the energy density of the cosmos which agrees with previous analysis as well as accurate cosmological measurements and observations, such as COBE, WMAP and Planck. The paper is partially intended as a vivid demonstration of the power of pure mathematics in physics and cosmology.

Cite this paper

Naschie, M. (2014) From Highly Structured E-Infinity Rings and Transfinite Maximally Symmetric Manifolds to the Dark Energy Density of the Cosmos. Advances in Pure Mathematics, 4, 641-648. doi: 10.4236/apm.2014.412073.

References

[1] Weibel, P., Ord, G. and Rossler, O., Eds. (2005) Spacetime Physics and Fractality. Festschrift in Honour of Mohamed El Naschie on the Occasion of His 60th Birthday. Springer, Vienna-New York.
[2] Yang, C.N. (1987) Square Root of Minus One, Complex Phases and Erwin Schrodinger. In: Kilmister, C.W., Ed., Schrodinger—Centenary Celebration of a Polymath, Cambridge University Press, Cambridge, UK, 53-64.
[3] Donaldson, S.K. and Kronheimer, P.B. (1990) The Geometry of Four Manifolds. Oxford University Press, Oxford.
[4] Kodiyalam, V. and Sunder, V.S. (2001) Topological Quantum Field Theories from Subfactors. Chapma & Hall/Crc, London, UK.
[5] ‘tHooft, G. (2005) 50 Years of Yang-Mills Theory. World Scientific, Singapore. http://dx.doi.org/10.1142/5601
[6] El Naschie, M.S., Rossler, O.E. and Prigogine, I. (1995) Quantum Mechanics, Diffusion and Chaotic Fractals. Pergamon Press/Elsevier, Oxford.
[7] He, J.-H. (2005) Transfinite Physics. China Scientific and Culture Publishing, Shanghai.
[8] Sidharth, B.G. and Altaisky, M.V. (2001) Frontiers of Fundamental Physics. Kluwer Academic/Plenum Publishers, New York (see in particular 81-95).
[9] Friedlander, E. and Grayson, D. (2005) Handbook of K-Theory. Springer, Berlin.
http://dx.doi.org/10.1007/978-3-540-27855-9
[10] Cartier, P., Julia, B., Moussa, P. and Vanhove, P. (2006) Frontiers in Number Theory, Physics and Geometry I. Springer, Berlin.
[11] El Naschie, M.S. (2004) A Review of E-Infinity and the Mass Spectrum of High Energy Particle Physics. Chaos, Solitons & Fractals, 19, 209-236. http://dx.doi.org/10.1016/S0960-0779(03)00278-9
[12] E-Infinity Group: E-Infinity High Energy Communication Nos. 1 to 90. E-Infinity Energyblogspot.com.
[13] Baker, A. (2013) Close Encounters of the E-Infinity Kind. Journal of Homotopy and Related Structures, 9, 257-282.
[14] El Naschie, M.S. (1995) Banach-Tarski Theorem and Cantorian Spacetime. Chaos, Solitons & Fractals, 5, 1503-1508.
http://dx.doi.org/10.1016/0960-0779(95)00052-6
[15] El Naschie, M.S. (2011) Quantum Entanglement as a Consequence of a Cantorian Micro Spacetime Geometry. Journal of Quantum Information Science, 1, 50-53.
http://dx.doi.org/10.4236/jqis.2011.12007
[16] Yau, S.-T. (2010) The Shape of Inner Space. Basic Book—Perseus Book Group, New York.
[17] El Naschie, M.S. (1997) Advanced Prerequisites for E-Infinity Theory. Chaos, Solitons & Fractals, 30, 636-641.
[18] Argyris, J. and Ciubotariu, C. (1997) On El Naschie’s Complex Time and Gravitation. Chaos, Solitons & Fractals, 8, 743-751. http://dx.doi.org/10.1016/S0960-0779(97)00072-6
[19] Sigalotti, L. and Mejias, A. (2006) The Golden Ratio in Special Relativity. Chaos, Solitons & Fractals, 30, 521-524.
http://dx.doi.org/10.1016/j.chaos.2006.03.005
[20] El Naschie, M.S. (1994) On Certain “Empty” Cantor Sets and Their Dimensions. Chaos, Solitons & Fractals, 4, 293-296. http://dx.doi.org/10.1016/0960-0779(94)90152-X
[21] Crasmareanu, M. and Hretcanu, C. (2008) Golden Differential Geometry. Chaos, Solitons & Fractals, 38, 1229-1238.
http://dx.doi.org/10.1016/j.chaos.2008.04.007
[22] El Naschie, M.S. (1998) Von Neumann Geometry and E-Infinity Quantum Spacetime. Chaos, Solitons & Fractals, 9, 2023-2030.
[23] El Naschie, M.S. (2007) On the Universality Class of All Universality Classes and E-Infinity Spacetime Physics. Chaos, Solitons & Fractals, 32, 927-936. http://dx.doi.org/10.1016/j.chaos.2006.08.017
[24] El Naschie, M.S. (2014) Why E Is Not Equal to mc2. Journal of Modern Physics, 5, 743-750.
http://dx.doi.org/10.4236/jmp.2014.59084
[25] El Naschie, M.S. (2008) Average Exceptional Lie Group Hierarchy and High Energy Physics. American Institute of Physics Conference Proceedings, 1018, 15-20.
[26] He, J.-H., Goldfain, E., Sigalotti, L.D. and Mejias, A. (2006) Beyond the 2006 Physics Nobel Prize for COBE: An Introduction to E-Infinity Spacetime Theory. China Science & Culture Publishing, Shanghai.
[27] El Naschie, M.S. (2001) On a General Theory for Quantum Gravity. In: Diebner, H., Druckry, T. and Weibel, P., Eds., Science of the Interface, Genista Verlag, Tübingen, 52-57.
[28] Duff, M. (1999) The World in Eleven Dimensions. IOP Publishing, Bristol.
[29] Kaku, M. (2000) Strings, Conformal Fields and M-Theory. Springer, New York.
http://dx.doi.org/10.1007/978-1-4612-0503-6
[30] Amendola, L. and Tsujikawa, S. (2010) Dark Energy: Theory and Observations. Cambridge University Press, Cambridge.
[31] Rindler, W. (2004) Relativity (Special, General and Cosmological). Oxford University Press, Oxford.
[32] Halvorson, H. (2011) Deep Beauty—Understanding the Quantum World through Mathematical Innovation. Cambridge University Press, Cambridge. http://dx.doi.org/10.1017/CBO9780511976971
[33] Ho, M.-W. (2014) E-Infinity Spacetime, Quantum Paradoxes and Quantum Gravity. Journal of the Institute of Science in Society, 62, 40-43.
[34] El Naschie, M.S. (1998) Superstrings, Knots and Noncommutative Geometry in E-Infinity Space. International Journal of Theoretical Physics, 37, 2935-2951.
http://dx.doi.org/10.1023/A:1026679628582
[35] El Naschie, M.S. (2006) Elementary Number Theory in Superstring Loop Quantum Mechanics, Twistors and E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 27, 297-330.
http://dx.doi.org/10.1016/j.chaos.2005.04.116
[36] El Naschie, M.S. (2004) Quantum Gravity, Clifford Algebra, Fuzzy Set Theory and the Fundamental Constants of Nature. Chaos, Solitons & Fractals, 20, 297-330.
http://dx.doi.org/10.1016/j.chaos.2003.09.029
[37] El Naschie, M.S. (2009) The Theory of Cantorian Spacetime and High Energy Particle Physics (An Informal Review). Chaos, Solitons & Fractals, 41, 2635-2646. http://dx.doi.org/10.1016/j.chaos.2008.09.059
[38] El Naschie, M.S. (2009) Wild Topology, Hyperbolic Geometry and Fusion Algebra of High Energy Particle Physics. Chaos, Solitons & Fractals, 13, 1935-1945. http://dx.doi.org/10.1016/S0960-0779(01)00242-9
[39] El Naschie, M.S. (2006) Hilbert, Fock and Cantorian Spaces in the Quantum Two-Slit Gedanken Experiment. Chaos, Solitons & Fractals, 27, 39-42. http://dx.doi.org/10.1016/j.chaos.2005.04.094
[40] El Naschie, M.S. (1998) Penrose Universe and Cantorian Spacetime as a Model for Noncommutative Quantum Geometry. Chaos, Solitons & Fractals, 9, 931-933. http://dx.doi.org/10.1016/S0960-0779(98)00077-0
[41] El Naschie, M.S. (2006) On an Eleven Dimensional E-Infinity Fractal Spacetime Theory. International Journal of Nonlinear Sciences & Numerical Simulation, 7, 407-409.
[42] El Naschie, M.S. (2013) A Resolution of the Cosmic Dark Energy via Quantum Entanglement Relativity Theory. Journal of Quantum Information Science, 3, 23-26. http://dx.doi.org/10.4236/jqis.2013.31006
[43] El Naschie, M.S. (2006) Topics in the Mathematical Physics of E-Infinity Theory. Chaos, Solitons & Fractals, 30, 656-663. http://dx.doi.org/10.1016/j.chaos.2006.04.043
[44] El Naschie, M.S. (2007) From Symmetry to Particles. Chaos, Solitons & Fractals, 32, 427-430.
http://dx.doi.org/10.1016/j.chaos.2006.09.016
[45] Nottale, L. (2011) Scale Relativity and Fractal Space-Time. Imperial College Press, London.
[46] El Naschie, M.S. (1994) Average Symmetry, Stability and Ergodicity of Multidimensional Cantor Sets. Il Nuovo Cimento B Series 11, 2, 149-157. http://dx.doi.org/10.1007/BF02727425
[47] El Naschie, M.S. (1998) Fredholm Operator and the Wave-Particle Duality. Chaos, Solitons & Fractals, 9, 975-978.
http://dx.doi.org/10.1016/S0960-0779(98)00076-9
[48] El Naschie, M.S. (2008) Symmetry Group Prerequisite for E-Infinity High Energy Physics. Chaos, Solitons & Fractals, 35, 975-978.
[49] El Naschie, M.S. (2007) Hilbert Space, Poincaré Dodecahedron and Golden Mean Transfiniteness. Chaos, Solitons & Fractals, 31, 787-793. http://dx.doi.org/10.1016/j.chaos.2006.06.003
[50] Neuenschwander, D. (2011) Emmy Noether’s Wonderful Theorem. The Johns Hopkins University Press, Baltimore.
[51] Balachandran, A., Kurkcuoglu, S. and Vaidya, S. (2007) Lectures on Fuzzy and Fuzzy SUSY Physics. World Scientific, Singapore.
[52] Finkelstein, D.R. (1996) Quantum Relativity. A Synthesis of the Ideas of Einstein and Heisenberg. Springer, Berlin.
[53] El Naschie, M.S. (2014) On a New Elementary Particle from the Disintegration of the Symplectic ‘tHooft-Veltman-Wilson Fractal Spacetime. World Journal of Nuclear Science and Technology, 4, 216-221.
http://dx.doi.org/10.4236/wjnst.2014.44027
[54] El Naschie, M.S. (2014) From Modified Newtonian Gravity to Dark Energy via Quantum Entanglement. Journal of Applied Mathematics and Physics, 2, 803-806.
[55] Tang, W., Li, Y., Kong, H.Y. and El Naschie, M.S. (2014) From Nonlocal Elasticity to Nonlocal Spacetime and Nanoscience. Bubbfil Nano Technology, 1, 3-12.
[56] El Naschie, M.S. (2014) Cosmic Dark Energy Density from Classical Mechanics and Seemingly Redundant Riemannian Finitely Many Tensor Components of Einstein’s General Relativity. World Journal of Mechanics, 4, 153-156.
http://dx.doi.org/10.4236/wjm.2014.46017
[57] El Naschie, M.S. (2014) Compactified Dimensions as Produced by Quantum Entanglement, the Four Dimensionality of Einstein’s Smooth Spacetime and ‘tHooft’s 4-ε Fractal Spacetime. American Journal of Astronomy & Astrophysics, 2, 34-37.
[58] Auffray, J.-P. (2014) E-Infinity Dualities, Discontinuous Spacetimes, Xonic Quantum Physics and the Decisive Experiment.Journal of Modern Physics, 5, 1427-1436.
[59] El Naschie, M.S. (2014) Electromagnetic—Pure Gravity Connection via Hardy’s Quantum Entanglement.Journal of Electromagnetic Analysis and Applications, 6, 233-237.
[60] El Naschie, M.S. (2013) Topological-Geometrical and Physical Interpretation of the Dark Energy of the Cosmos as a “Halo” Energy of the Schrodinger Quantum Wave.Journal of Modern Physics, 4, 591-596.
[61] Wigner, E.P. (1960) The Unreasonable Effectiveness of Mathematics in Natural Science. Communications in Pure and Applied Mathematics, 13, 1-14. http://dx.doi.org/10.1002/cpa.3160130102
[62] Changeux, J. and Connes, A. (1989) Conversation on Mind, Matter and Mathematics. Princeton University Press, Princeton.
[63] Helal, M.A., Marek-Crnjac, L. and He, J.-H. (2013) The Three Page Guide to the Most Important Results of M. S. El Naschie’s Research in E-Infinity Quantum Physics and Cosmology. Open Journal of Microphysics, 3, 141-145.
http://dx.doi.org/10.4236/ojm.2013.34020                                                                               eww141219lx

Subdural Hematoma and Postdural Puncture Headache from Intrathecal Pump Placement Resolved with Lumbar Epidural Blood Patch

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=49887#.VB-9jVfHRK0

Subdural Hematoma and Postdural Puncture Headache from Intrathecal Pump Placement Resolved with Lumbar Epidural Blood Patch.

ABSTRACT

Intrathecal drug delivery systems are commonly used in the management of chronic pain, cancer pain and neuromuscular disorders with muscle spasticity. The complications associated with in-trathecal pump placement include persistent cerebrospinal fluid (CSF) leak, hygroma, meningitis, and granuloma formation. A severe persistent CSF leak may cause postdural puncture headache along with acute intracranial subdural hematoma, which can be potentially life threatening. Surgical exploration with dural repair is required to treat this severe complication when conservative treatments fail. We present a case report of severe persistent CSF leak after intrathecal pump revision that resulted in a subdural hematoma and postdural puncture headache. In this case, an epidural blood patch was performed using epidural catheter under fluoroscopic guidance to target the site of CSF leak and to avoid damaging the intrathecal catheter. This patient’s headache was resolved and intrathecal catheter remained intact after this blood patch.

Cite this paper

Ng, A. , Romo, V. and Wang, D. (2014) Subdural Hematoma and Postdural Puncture Headache from Intrathecal Pump Placement Resolved with Lumbar Epidural Blood Patch. Open Journal of Anesthesiology, 4, 227-230. doi: 10.4236/ojanes.2014.49033.
References

 

[1] Hassenbusch, S.J., Pillay, P.K., Magdinec, M., et al. (1990) Constant Infusion of Morphine for Intractable Cancer Pain Using an Implanted Pump. Journal of Neurosurgery, 73, 405-409.
http://dx.doi.org/10.3171/jns.1990.73.3.0405
[2] Stempien, L. and Tsai, T. (2000) Intrathecal Baclofen Pump Use for Spasticity: A Clinical Survey. American Journal of Physical Medicine & Rehabilitation, 79, 536-541.
http://dx.doi.org/10.1097/00002060-200011000-00010
[3] Singh, P.K., Jain, R., et al. (2008) Management of Pericatheter Cerebrospinal Fluid Leak after Intrathecal Implantation of a Drug Delivery System. American Journal of Hospice and Palliative Care, 25, 237-239.
http://dx.doi.org/10.1177/1049909108315520
[4] Sciubba, D.M., Kretzer, R.M. and Wang, P.P. (2005) Acute Intracranial Subdural Hematoma Following a Lumbar CSF Leak Caused by Spine Surgery. Spine, 30, E730-E732.
http://dx.doi.org/10.1097/01.brs.0000192208.66360.29
[5] Gaucher Jr., D.J. and Perez Jr., J.A. (2002) Subdural Hematoma Following Lumbar Puncture. Archives of Internal Medicine, 162, 1904-1905.
http://dx.doi.org/10.1001/archinte.162.16.1904
[6] Francia, A., Parisi, P., Vitale, A.M. and Esposito, V. (2001) Life-Threatening Intracranial Hypotension after Diagnostic Lumbar Puncture. Neurological Sciences, 22, 385-389.
http://dx.doi.org/10.1007/s100720100069
[7] McHardy, F.E., Bayly, P.J. and Wyatt, M.G. (2001) Fatal Subdural Haemorrhage Following Lumbar Spinal Drainage during Repair of Thoraco-Abdominal Aneurysm. Anaesthesia, 56, 168-170.
http://dx.doi.org/10.1046/j.1365-2044.2001.01786-2.x
[8] Chestnut, D.H. (2004) Obstetric Anesthesia Principles and Practice. Mosby-Yearbook, St. Louis.
[9] Sechzer, P.H. and Abel, L. (1978) Post Spinal Anesthesia Headache Treated with Caffeine. Current Therapeutic Research, 24, 307-331.
[10] Camann, W.R., Murray, R.S., Mushlin, P.S. and Lambert, D.H. (1990) Effects of Oral Caffeine on Post Dural Puncture Headaches: A Double-Blinded, Placebo-Controlled Trial. Anesthesia & Analgesia, 70, 181-184.
http://dx.doi.org/10.1213/00000539-199002000-00009
[11] Bolton, V.E., Leicht, C.H. and Scanlon, T.S. (1989) Postpartum Seizures after Epidural Blood Patch and Intravenous Caffeine. Anesthesiology, 70, 146-149.
http://dx.doi.org/10.1097/00000542-198901000-00029
[12] Dodd, J.E., Efird, R.C. and Rauck, R.L. (1989) Cerebral Blood Flow Changes with Caffeine Therapy for Post Dural Headaches. Anesthesiology, 71, A679.
http://dx.doi.org/10.1097/00000542-198909001-00679
[13] Friedberg, S.R. (2005) Surgical Management of Cerebrospinal Fluid Leakage after Spinal Surgery. In: Quinones-Hinojosa, A., Ed., Schmidek and Sweet’s Operative Neurosurgical Techniques: Indications, Methods and Results. 5th Edition, WB Saunders, Philadelphia, 2147-2152.
[14] Oedit, R., van Kooten, F., Bakker, S.L.M. and Dippel, D.W.J. (2005) Efficacy of the Epidural Blood Patch for the Treatment of Post Lumbar Puncture Headache BLOPP: A Randomised, Observer-Blind, Controlled Clinical Trial. BMC Neurology, 5, 12.
http://dx.doi.org/10.1186/1471-2377-5-12
[15] Lee, C.H., Seo, B.K., et al. (2004) Using MRI to Evaluate Anatomic Significance of Aortic Bifurcation, Right Renal Artery, and Conus Medullaris when Locating Lumbar Vertebral Segments. American Journal of Roentgenology, 182, 1295-1300.
http://dx.doi.org/10.2214/ajr.182.5.1821295        eww140922lx

On Bianchi Type III String Cloud Universe Containing Strange Quark Matter

Read  full  paper  at:

www.scirp.org/journal/PaperInformation.aspx?PaperID=49782#.VBpTXlfHRK0

On Bianchi Type III String Cloud Universe Containing Strange Quark Matter.

ABSTRACT

Considering Bianchi type III space-time we present the model Universe containing strange quark matter which is expanding, anisotropic, with a sign of dark energy that help in accelerated expansion of this Universe. It is also seen that the model Universe contains both particles and strings but ultimately will have fluid containing particles only. This model which we consider here is acceptable in view of the present observations of the Universe. Some physical and geometrical properties are also discussed.

Cite this paper

Singh, K. and Singh, K. (2014) On Bianchi Type III String Cloud Universe Containing Strange Quark Matter. International Journal of Astronomy and Astrophysics, 4, 544-549. doi: 10.4236/ijaa.2014.43050.
References

 

[1] Adhav, K.S., Nimkar, A.S., Raut, V.B. and Thakare, R.S. (2009) Strange Quark Matter Attached to String Cloud in Bianchi Type-III Space Time. Astrophysics and Space Science, 319, 81-84.
http://dx.doi.org/10.1007/s10509-008-9941-1
[2] Stachel, J. (1980) Thickening the String I. The String Perfect Dust. Physics Review D, 21, 2171. http://dx.doi.org/10.1103/PhysRevD.21.2171
[3] Letelier, P.S. (1983) String Cosmologies. Physics Review D, 28, 2414.
http://dx.doi.org/10.1103/PhysRevD.28.2414
[4] Vilenkin, A. (1981) Gravitational Field of Vacuum Domain Walls and Strings. Physics Review D, 23, 852. http://dx.doi.org/10.1103/PhysRevD.23.852
[5] Gott, J.R. (1985) Gravitational Lensing Effects of Vacuum Strings—Exact Solutions. Astrophysical Journal, Part 1, 288, 422-427. http://dx.doi.org/10.1086/162808
[6] Krori, K.D., Chaudhury, T., Mahanta, C.R. and Mazumdar, A. (1990) Some Exact Solutions in String Cosmology. General Relativity and Gravitation, 22, 123-130. http://dx.doi.org/10.1007/BF00756203
[7] Banerjee, S. and Bhui, B. (1990) Homogeneous Cosmological Model in Higher Dimension. Monthly Notices of the Royal Astronomical Society, London, 247, 57.
[8] Tikekar, R. and Patel, L.K. (1994) A Class of Cylindrically Symmetrical Models in String Cosmology. General Relativity and Gravitation, 26, 647-653. http://dx.doi.org/10.1007/BF02116954
[9] Bhattacharjee, R. and Baruah, K.K. (2001) String Cosmologies with a Scalar Field. Pure and Applied Mathematics, 32, 47.
[10] Itoh, N. (1970) Hydrostatic Equilibrium of Hypothetical Quark Stars. Progress of Theoretical Physics, 44, 291-292. http://dx.doi.org/10.1143/PTP.44.291
[11] Bodmer, A.R. (1971) Collapsed Nuclei. Physics Review D, 4, 1601-1606.
http://dx.doi.org/10.1103/PhysRevD.4.1601
[12] Witten, E. (1984) Cosmic Separation of Phases. Physics Review D, 30, 272.
http://dx.doi.org/10.1103/PhysRevD.30.272
[13] Alcock, C., Farhi, E. and Olinto, A. (1986) Strange Stars. Astrophysical Journal, 310, 261-272. http://dx.doi.org/10.1086/164679
[14] Haensel, P., Zdunik, J.L. and Schaeffer, R. (1986) Strange Quark Stars. Astronomy and Astrophysics, 160, 121-128.
[15] Cheng, K.S., Dai, Z.G. and Lu, T. (1998) Strange Stars and Related Astrophysical Phenomena. International Journal of Modern Physics D, 7, 139. http://dx.doi.org/10.1142/S0218271898000139
[16] Yavuz, I., Yilmaz, I. and Baysal, H. (2005) Strange Quark Matter Attached to the String Cloud in the Spherical Symmetric Space-Time Admitting Conformal Motion. International Journal of Modern Physics D, 14, 1365. http://dx.doi.org/10.1142/S0218271805007061
[17] Yilmaz, I. (2005) Domain Wall Solutions in the Nonstatic and Stationary Godel Universes with a Cosmological Constant. Physics Review D, 71, 103503.
http://dx.doi.org/10.1103/PhysRevD.71.103503
[18] Yilmaz, I. (2006) String Cloud and Domain Walls with Quark Matter in 5-D KaluzaKlein Cosmological Model. General Relativity and Gravitation, 38, 1397-1406. http://dx.doi.org/10.1007/s10714-006-0322-1
[19] Mak, M.K. and Harko, T. (2004) Quark Stars Admitting a One-Parameter Group of Conformal Motions. International Journal of Modern Physics D, 13, 149. http://dx.doi.org/10.1142/S0218271804004451
[20] Adhav, K.S., Nimkar, A.S. and Dawande, M.V. (2008) String Cloud and Domain Walls with Quark Matter in n-Dimensional Kaluza-Klein Cosmological Model. International Journal of Theoretical Physics, 47, 2002-2010. http://dx.doi.org/10.1007/s10773-007-9644-3
[21] Khadekar, G.S. and Wanjari, R. (2009) Domain Wall with Strange Quark Matter in Kaluza-Klein Type Cosmological Model. International Journal of Theoretical Physics, 48, 2550-2557.
http://dx.doi.org/10.1007/s10773-009-0040-z
[22] Katore, S.D. and Shaikh, A.Y. (2012) Cosmological Model with Strange Quark Matter Attached to Cosmic String for Axially Symmetric Space-Time. International Journal of Theoretical Physics, 51, 1881-1888. http://dx.doi.org/10.1007/s10773-011-1064-8
[23] Khadekar, G.S. and Rupali, W. (2012) Geometry of Quark and Strange Quark Matter in Higher Dimensional General Relativity. International Journal of Theoretical Physics, 51, 1408-1415.
http://dx.doi.org/10.1007/s10773-011-1016-3
[24] Khadekar, G.S. and Rajani, S. (2012) Higher Dimensional Cosmological Model with Quark and Strange Quark Matter. International Journal of Theoretical Physics, 51, 1442-1447.
http://dx.doi.org/10.1007/s10773-011-1020-7
[25] Rao, V.U.M. and Sireesha, K.V.S. (2013) Axially Symmetric Space-Time with Strange Quark Matter Attached to String Cloud in Brans-Dicke Theory of Gravitation. International Journal of Theoretical Physics, 52, 1052-1060. http://dx.doi.org/10.1007/s10773-012-1420-3

eww140918lx