Recovering Scrap Anode Copper Using Reactive Electrodialysis

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51368#.VGVVbmfHRK0

ABSTRACT

Despite functioning without major operational problems—copper electro-refining does not allow complete use of copper anodes, peaking at 85% of the copper anode in weight. Consequently, the remaining 15% of scrap copper must be recirculated into the copper smelting. The use of reactive electrodyalysis is a system capable of continuously electro-refining scrap, by using a stainless steel basket and a cationic exchanging membrane in order to increase production of copper cathodes at the same percentage; it currently today returns to the copper smelter. In terms of specific energy consumption, this process would use between 3 and 4 times the value of normal electro-refining.

Cite this paper

Cifuentes, G. , Hernández, J. and Guajardo, N. (2014) Recovering Scrap Anode Copper Using Reactive Electrodialysis. American Journal of Analytical Chemistry, 5, 1020-1027. doi: 10.4236/ajac.2014.515108.

References

[1] Cifuentes, G., Vargas, C. and Simpson, J. (2009) Analysis of the Main Variables That Influence the Cathodic Rejection during Copper Electrorefining (Análisis de las principales variables que influyen en el rechazo catódico durante el electrorrefino del cobre). Revista de Metalurgia, 45, 228-236.
http://dx.doi.org/10.3989/revmetalm.0729
[2] Davenport, G., King, M., Schlesinger, M. and Biswas, A.K. (2002) Extractive Metallurgy of Copper. 3rd Edition, Elsevier, Oxford.
[3] Hartinger, L. (1990) Handbook of Effluent Treatment and Recycling for the Metal Finishing Industry. 2nd Edition, Carl Hanser, Munich.
[4] Di Bari, G. (2000) Nickel Plating. Metal Finishing, 98, 270-288.
http://dx.doi.org/10.1016/S0026-0576(00)80334-7
[5] Chena, S.-S., Lib, C.-W., Hsua, H.-D., Leeb, P.-C., Changa, Y.-M. and Yang, C.-H. (2009) Concentration and Purification of Chromate from Electroplating Wastewater by Two-Stage Electrodialysis Processes. Journal of Hazardous Materials, 161, 1075-1080.
http://dx.doi.org/10.1016/j.jhazmat.2008.04.106
[6] Llorens, J. (1992) Membranes Technology (Tecnología de Membranas). Class Notes, University of Barcelona, Barcelona.
[7] Schirg, P.G. (2010) Introduction to Theory and Practice in Technical Membranes (Introducción a la teoría y práctica de la Técnica de Membranas). PS Prozesstechnike GMBH.
http://www.membran.com
[8] Koter, S. and Warszawski, A. (2000) Electromembrane Processes in Environment Protection. Polish Journal of Environmental Studies, 9, 45-56.
[9] Xu, T.W. (2005) Ion Exchange Membranes: State of Their Development and Perspective. Journal of Membrane Science, 263, 1-29.
http://dx.doi.org/10.1016/j.memsci.2005.05.002
[10] Baker, R.W. (2004) Chapter 10: Ionic Exchange Membranes in Electro-Dialysis Processes. In: Membrane Technology and Applications, 2nd Edition, John Wiley Sons, Ltd., Hoboken.
http://dx.doi.org/10.1002/0470020393.ch10
[11] Bernardes, A.M., Siqueira, M.A. and Zoppas, J. (2013) Electrodialysis and Water Reuse: Novel Approaches—Topics in Mining, Metallurgy and Materials Engineering. Springer, Berlin-Heidelberg.
[12] Herrera, C. (2003) Electrolytic Refining of Particulate Anodicshot (Refinación electrolítica de scrap anódico granallado). Titulation Work, Metallurgical Department, University of Santiago of Chile, Santiago.
[13] Urra, C. (2003) Electrolytic Refining of Particulate Anodic Scrap (Refinación electrolítica de scrap anódico particulado). Titulation Work, Metallurgical Department, University of Santiago of Chile, Santiago.
[14] Cifuentes, G., Simpson, J., Lobos, F., Briones, L. and Morales, A. (2009) Copper Electrowinning Based on Ractive Electrodialysis. Journal of the Chilean Chemical Society, 54, 334-338.
http://dx.doi.org/10.4067/S0717-97072009000400002                                                                eww141114lx

Modeling Operational Parameters of a Reactive Electro-Dialysis Cell for Electro-Refining Anodic Scrap Copper

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51367#.VGVVbWfHRK0

ABSTRACT

This work will create an electro-dialysis cell model that has the purpose of refining anodic scrap copper—an element that currently must be returned to the copper conversion process. The cell modeling is based on Ohm’s Law, while the resulting copper deposit morphology is studied through the thickness of the layer deposited on the surface and the electric current lines traced from the anode to the cathode. The use of the model demonstrated that it is possible to effectively predict the specific energy consumption required for the refinement of the anodic scrap copper, and the morphology of the cathode obtained, with a margin of error of 9%.

Cite this paper

Cifuentes, G. , Hernández, J. , Manríquez, J. and Guajardo, N. (2014) Modeling Operational Parameters of a Reactive Electro-Dialysis Cell for Electro-Refining Anodic Scrap Copper. American Journal of Analytical Chemistry, 5, 1011-1019. doi: 10.4236/ajac.2014.515107.

References

[1] Cifuentes, G. (2000) Theory and Praxis of Electrometallurgy (Teoría y práctica de la electrometalurgia). Class Notes, Metallurgical Department at University of Santiago of Chile, Santiago.
[2] Urra, C. (2003) Electrolytic Refining of Particulate Anodic Scrap (Refinación electrolítica de scrap anódico particulado). Titulation Work, Metallurgical Department, University of Santiago of Chile, Santiago.
[3] Davenport, G., King, M., Schlesinger, M. and Biswas, A.K. (2002) Extractive Metallurgy of Copper. 3rd Edition, Elsevier, Oxford.
[4] Cifuentes, G., Hernández, J. and Guajardo, N. (2014) Recovering Scrap Anode Copper Using Reactive Electrodialysis. American Journal of Analytical Chemistry, 5, 9.
[5] Hernández, J. (2014) Anodic Scrap Recovering Using Reactive Electrodialysis (Recuperación de Scrap anódico por electrodiálisis reactiva). M.Sc. Thesis, Metallurgical Department, University of Santiago of Chile, Santiago.
[6] Cifuentes, G., Simpson, J., Lobos, F., Briones, L. and Morales, A. (2009) Copper Electrowinning Based on Reactive Electrodialysis. Journal of the Chilean Chemical Society, 54, 334-338.
http://dx.doi.org/10.4067/S0717-97072009000400002
[7] Walsh, F. (1999) A First Course of Electrochemical Engineering (Un primer curso de Ingeniería Electroquímica). Editorial Club Universitario, San Vicente, Espana.
[8] Bockris, J. and Reddy, A. (1977) Modern Electrochemistry: An Introduction to an Interdisciplinary Area, Volume 2. 3th Edition, Plenum Rosetta Edition, New York.
[9] Introduction to COMSOL Multiphysics.
http://www.comsol.com/shared/downloads/IntroductionToCOMSOLMultiphysics.pdf
[10] Xu, T.W. (2005) Ion Exchange Membranes: State of Their Development and Perspective. Journal of Membrane Science, 263, 1-29.
http://dx.doi.org/10.1016/j.memsci.2005.05.002
[11] Baker, R.W. (2004) Membrane Technology and Applications. 2nd Edition, Membrane Technology and Research, Inc., Menlo Park, California.
http://dx.doi.org/10.1002/0470020393
[12] Davis, S.M. (2006) Electrochemical Splitting of Sodium Sulfate. M.Sc. Thesis, Georgia Institute of Technology, Atlanta, Georgia.                                                                                                                eww141114lx