Children’s Physical Activity and Associated Variables during Preschool Physical Education

Read  full  paper  at:http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53978#.VN2uoSzQrzE

Physical activity (PA) is important for children’s growth and development and for their current and future health. Schools, especially during physical education (PE), are important locations for children to accrue PA. The purpose of this study was to assess the PA levels of preschool children during structured PE lessons and to evaluate the impact of selected characteristics (e.g., lesson context, length, and location; teacher behavior; class size; activity area density). Trained observers used SOFIT (System for Observing Fitness Instruction Time) to assess 90 structured PE lessons taught by 25 different teachers. Intact classes (n = 5 to 6 and representing 3 different grade levels) in 4 selected preschools were observed on 4 days over a 4-week period. Overall, children engaged in moderate-to-vigorous physical activity (MVPA) 49.9% (SD = 15.7) of lesson time and there were differences in MVPA% among the four preschools, by lesson context, and by teacher behavior. There were no significant differences in MVPA% either between indoor (n = 69) and outdoor (n = 21) lessons or among the 3 grade levels. Even though the lessons approached the 50% MVPA guideline, the brevity of them left children far short of recommended daily amounts of PA. Future studies should investigate how preschools can increase on-campus opportunities for PA both during PE and throughout the school days.

Cite this paper

Chow, B. , McKenzie, T. and Louie, L. (2015) Children’s Physical Activity and Associated Variables during Preschool Physical Education. Advances in Physical Education, 5, 39-49. doi: 10.4236/ape.2015.51005.

References

[1] American Heart Association (2014). The AHA’s Recommendations for Physical ACTIVITY in Children. Dallas, TX: American Heart Association.
http://www.heart.org/HEARTORG/GettingHealthy/HealthierKids/
ActivitiesforKids/The-AHAs-Recommendations-for-
Physical-Activity-in-Children_UCM_304053_Article.jsp#
[2] Baumgartner, T. A., & Hensley, L. D. (2006). Conducting and Reading Research in Health and Human Performance (4th ed.). Boston: McGraw-Hill.
[3] Cardon, G. M., & De Bourdeaudhuij, I. M. (2008). Are Preschool Children Active Enough? Objectively Measured Physical Activity Levels. Research Quarterly for Exercise and Sport, 79, 326-332.
http://dx.doi.org/10.1080/02701367.2008.10599496
[4] Chow, B. C., McKenzie, T. L., & Louie, L. (2008). Children’s Physical Activity and Environmental Influences during Elementary School Physical Education. Journal of Teaching Physical Education, 27, 38-50.
[5] Chow, B. C., McKenzie, T. L., & Louie, L. (2009). Physical Activity and Environmental Influences during Secondary School Physical Education. Journal of Teaching Physical Education, 28, 21-37.
[6] Commonwealth of Australia, Department of Health (2014). Move and Play Every Day: National Physical Activity Recommendations for Children 0 – 5 Years.
http://www.health.gov.au/internet/main/publishing.nsf/
content/F01F92328EDADA5BCA257BF0001E720D/$File/
Move%20and%20play%20every%20day%200-5yrs.PDF
[7] Department of Health, Physical Activity, Health Improvement and Protection (2011). Start Active, Stay Active: A Report on Physical Activity for Health for the Four Home Countries’ Chief Medical Officers. London: Crown. https://www.sportengland.org/media/388152/dh_128210.pdf
[8] Dowda, M., Pate, R. P., Trost, S. G., Almeida, M. J. C. A., & Sirard, J. R. (2004). Influences of Preschool Policies and Practices on Children’s Physical Activity. Journal of Community Health, 29, 183-196.
http://dx.doi.org/10.1023/B:JOHE.0000022025.77294.af
[9] Fairclough. S. J., & Stratton, G. (2006). A Review of Physical Activity Levels during Elementary School Physical Education. Journal of Teaching in Physical Education, 25, 239-257.
[10] Hong Kong Government Census and Statistics Department (2006). Hong Kong 2006 Population By-Census Main Report: (Vol. 1, pp. 18).
http://www.censtatd.gov.hk/products_and_services/products/
publications/statistical_report/population_and_vital_events/
index_cd_B1120047_dt_latest.jsp
[11] Hong Kong Government Education Bureau (2006). Operational Manual of Pre-Primary Institutions.
http://www.edb.gov.hk/attachment/en/edu-system/
preprimary-kindergarten/overview/Operation%20Mannal_eng.pdf
[12] Institute of Medicine (IOM) (2011). Early Childhood Obesity Prevention Policies. Washington DC: National Academics Press.
[13] Institute of Medicine (IOM) (2013). Educating the Student Body: Taking Physical Activity and Physical Education to School. Washington DC: National Academics Press.
[14] Janssen, I., & LeBlanc, A. G. (2010). Systematic Review of the Health Benefits of Physical Activity and Fitness in School- Aged Children and Youth. International Journal of Behavioral Nutrition and Physical Activity, 7, 40.
http://dx.doi.org/10.1186/1479-5868-7-40
[15] Janz, K. F., Burns, T. L., Levy, S. M., Torner, J. C., Willing, M. C., Beck, T. J., Marshall, T. A. et al. (2004). Everyday Activity Predicts Bone Geometry in Children: The Iowa Bone Development Study. Medicine & Science in Sports & Exercise, 36, 1124-1131.
http://dx.doi.org/10.1249/01.MSS.0000132275.65378.9D
[16] Louie, L., & Chan, L. (2003). The Use of Pedometry to Evaluate the Physical Activity Levels among Preschool Children in Hong Kong. Early Child Development & Care, 173, 97-107.
http://dx.doi.org/10.1080/0300443022000022459
[17] McKenzie, T. L. (2012). SOFIT (System for Observing Fitness Instruction Time): Generic Description and Procedures Manual. San Diego, CA: San Diego State University.
http://activelivingresearch.org/sofit-system-observing
-fitness-instruction-time
[18] McKenzie, T. L., & Lounsbery, M. A. F. (2013). Physical Education Teacher Effectiveness in a Public Health Context. Research Quarterly for Exercise & Sport, 84, 419-430.
http://dx.doi.org/10.1080/02701367.2013.844025
[19] McKenzie, T. L., & van der Mars, H. (2015). Top 10 Research Questions Related to Assessing Physical Activity and Its Contexts Using Systematic Observation. Research Quarterly for Exercise and Sport, 86, 13-29.
http://dx.doi.org/10.1080/02701367.2015.991264
[20] McKenzie, T. L., Catellier, D. J., Conway, T., Lytle, L. A., Grieser, M., Webber, L. A. et al. (2006). Girls’ Activity Levels and Lesson Contexts during Middle School PE: TAAG Baseline. Medicine & Science in Sports & Exercise, 38, 1229-1235.
http://dx.doi.org/10.1249/01.mss.0000227307.34149.f3
[21] McKenzie, T. L., Sallis, J. F., & Nader, P. R. (1991). SOFIT: System for Observing Fitness Instruction Time. Journal of Teaching in Physical Education, 11, 195-205.
[22] McKenzie, T. L., Sallis, J. F., Nader, P. R., Broyles, S. L., & Nelson, J. A. (1992). Anglo- and Mexican-American Preschoolers at Home and at Recess: Activity Patterns and Environmental Influences. Journal of Developmental & Behavioral Pediatrics, 13, 173-180.
http://dx.doi.org/10.1097/00004703-199206000-00004
[23] National Association for Sport and Physical Education [NASPE] (2011). Active Start: A Statement of Physical Activity Guidelines for Children from Birth to Age 5 (2nd ed.). Reston, VA: NASPE.
http://columbus.gov/uploadedFiles/Public_Health/Content_Editors/
Planning_and_Performance/Healthy_Children_Healthy_Weights/
NASPE%20Active%20Start.pdf
[24] NICHD Study of Early Child Care and Youth Development Network [NICHD] (2003). Frequency and Intensity of Activity of Third Grade Children in Physical Education. Archives of Pediatrics & Adolescent Medicine, 157, 185-190.
[25] Pate, R. R., & O’Neill, J. R. (2012). Physical Activity Guidelines for Young Children: An Emerging Consensus. JAMA Pediatrics, 166, 1095-1096.
http://dx.doi.org/10.1001/archpediatrics.2012.1458
[26] Pate, R. R., Mclver, K., Dowda, M., Brown, W. H., & Addy, C. (2008). Directly Observed Physical Activity Levels in Preschool Children. Journal of School Health, 78, 438-444.
http://dx.doi.org/10.1111/j.1746-1561.2008.00327.x
[27] Pate, R. R., Pfeiffer, K. A., Trost, S. G., Ziegler, P., & Dowda, M. (2004). Physical Activity among Children Attending Preschools. Pediatrics, 114, 1258-1263.
http://dx.doi.org/10.1542/peds.2003-1088-L
[28] Pate, R., Davis, M. G., Robinson, T. N., Stone, E. J., McKenzie, T. L., & Young, J. C. (2006). Promoting Physical Activity in Children and Youth: A Leadership Role for Schools: A Scientific Statement from the American Heart Association Council on Nutrition, Physical Activity, and Metabolism (Physical Activity Committee) in Collaboration with the Councils on Cardiovascular Disease in the Young and Cardiovascular Nursing. Circulation, 114, 1214-1224.
http://dx.doi.org/10.1161/CIRCULATIONAHA.106.177052
[29] Reilly, J. J. (2008). Physical Activity, Sedentary Behaviour and Energy Balance in the Preschool Child: Opportunities for Early Obesity Prevention. Proceedings of the Nutrition Society, 67, 317-325.
http://dx.doi.org/10.1017/S0029665108008604
[30] Reznik, M., Wylie-Rosett, J. W., Kim, M., & Ozuah, P. O. (2013). Physical Activity during School in Urban Minority Kindergarten and First-Grade Pupils. Pediatrics, 131, e81-e87.
http://dx.doi.org/10.1542/peds.2012-1685
[31] Sugiyama, T., Okely, A. D., Masters, J. M., & Moore, G. T. (2012). Attributes of Child Care Centers and Outdoor Play Areas Associated with Preschoolers’ Physical Activity and Sedentary Behavior. Environment and Behavior, 44, 334-349.
http://dx.doi.org/10.1177/0013916510393276
[32] Timmons, B. W., Naylor, P. J., & Pfeiffer, K. A. (2007). Physical Activity for Preschool Children—How Much and How? Canadian Journal of Public Health, 98, S122-S134.
[33] Tremblay, L., Boudreau-Larivière, C., & Cimon-Lambert, K. (2012). Promoting Physical Activity in Preschoolers: A Review of the Guidelines, Barriers, and Facilitators for Implementation of Policies and Practices. Canadian Psychology, 53, 280-290.
http://dx.doi.org/10.1037/a0030210
[34] Trost, S. G., Ward, D. S., & Senso, M. (2010). Effects of Child Care Policy and Environment on Physical Activity. Medicine & Science in Sports & Exercise, 42, 520-525.
http://dx.doi.org/10.1249/MSS.0b013e3181cea3ef
[35] Tucker, P. (2008). The Physical Activity Levels of Preschool-Aged Children: A Systematic Review. Early Childhood Research Quarterly, 23, 547-558.
http://dx.doi.org/10.1016/j.ecresq.2008.08.005
[36] U.S. Department of Health and Human Services (USDHHS) (2000). Healthy People 2010 (Conference ed.). Washington, DC: U.S. Department of Health and Human Services.
[37] Van Cauwenberghe, E., Labarque, V., Gubbels, J., De Bourdeaudhuij, I., & Cardon, G. (2012). Preschooler’s Physical Activity Levels and Associations with Lesson Context, Teacher’s Behavior, and Environment during Preschool Physical Education. Early Childhood Research Quarterly, 27, 221-230.
http://dx.doi.org/10.1016/j.ecresq.2011.09.007
[38] Wang, Y., & Lobstein, T. (2006). Worldwide Trends in Childhood Overweight and Obesity. International Journal of Pediatric Obesity, 1, 11-25.
http://dx.doi.org/10.1080/17477160600586747
[39] Waters, E., de Silva-Sanigorski, A., Hall, B. J., Brown, T., Campbell, K. J., Gao, Y. et al. (2011). Interventions for Preventing Obesity in Children. Cochrane Database System Review, 7, CD001871.
http://dx.doi.org/10.1002/14651858.CD001871.pub3
[40] World Health Organization (2004). Global Strategy on Diet, Physical Activity and Health. 57th World Health Assembly. Geneva: World Health Organization.
http://www.who.int/dietphysicalactivity/strategy/
eb11344/strategy_english_web.pdf                          eww150213lx

Social and Environmental Management in the Municipalities of Minas Gerais, Brazil

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53557#.VMiL2izQrzE

ABSTRACT

The objective of this study is to analyze the ability of the public management of environmental problems faced by the municipalities in the state of Minas Gerais, Brazil. The theoretical elements that underlie this article are related to environmental management and municipal public administration. We used the results of the natural vulnerability and the social potential of the indicator of municipal environmental management, as well as data on sanitation and waste disposal. The weaknesses of public administration are located in the counties of low population group. These municipalities do not have suitable structure, formal organization and power of decisiveness in dealing with environmental problems.

Cite this paper

Pereira, J. , Rezende, J. and Boas, A. (2015) Social and Environmental Management in the Municipalities of Minas Gerais, Brazil. Journal of Environmental Protection, 6, 64-76. doi: 10.4236/jep.2015.61008.

References

[1] IMRS (2011) Belo Horizonte: Fundacao Joao Pinheiro.
http://www.fjp.mg.gov.br
[2] Carvalho, I. and Scotto, G. (1995) A Natureza, e Nossa? Democracia Viva, Ibase, Rio de Janeiro, 112, 28-29.
[3] CMMAD (Comissao Mundial sobre Meio Ambiente e Desenvolvimento) (1991) Nosso Futuro Comum. Editora Fundacao Getulio Vargas, Rio de Janeiro.
[4] Munhoz, T. (2005) Desenvolvimento SustentAvel e Educacao Ambiental. Sao Paulo.
http://www.intelecto.net/cidadania/meio-5.html
[5] Medeiros, P.C. (2005) A Face Oculta da Privatizacao e os Desafios da Gestao Social das Aguas no Estado do ParanA. Raega, Curitiba—PR, 1, 117-130.
[6] Quintas, J.S. (2006) Introducao a gestao ambiental publica. 2nd Edition, IBAMA, Brasilia, 134 p.
[7] Cunha, M.A.V.C. (2000) Portal de Servicos Publicos e de Informacao ao Cidadao: Estudo de casos no Brasil. Tese (Doutorado em Administracao), Universidade Federal de Sao Paulo—FEA/USP, Sao Paulo.
[8] Quintas, J.S. (2006) Introducao a gestao ambiental publica. 2nd Edition, IBAMA, Brasilia, 134 p.
[9] Silva, R.C.F. (2003) Gestao Urbana e Desenvolvimento SustentAvel. Instituto de Ensino Superior da Amazonia, Notas previas de aula, Manaus.
[10] Quintas, J.S. (2006) Introducao a gestao ambiental publica. 2nd Edition, IBAMA, Brasilia, 134 p.
[11] Juchem, P.A. (1995) Introducao a Gestao, Auditoria e Balanco Ambiental para Empresas. Notas previas de aulas, Faculdade de Administracao e Economia, Curitiba.
[12] IBGE (2011) Sinopse do censo demogrAfico 2010. Instituto Brasileiro de Geografia e Estatistica, Rio de Janeiro.
[13] Rezende, J.B., Leite, E.T. and Araujo, V.M. (2008) AnAlise das transferencias de recursos financeiros intergovernamentais e das transferencias monetArias diretas as familias: O caso dos municipios mineiros de baixo contingente populacional. In: Encontro de Administracao Publica e Governanca, Anais do Encontro de Administracao Publica e Governanca, ANPAD, Salvador.
[14] Neves, E.M.S.C. (2006) A Politica Ambiental e os Municipios Brasileiros. Tese (Doutorado em Ciencias Sociais), Instituto de Ciencias Humanas e Sociais, Universidade Federal Rural do Rio de Janeiro, Rio de Janeiro.
[15] Arretche, M.T.S. (2004) Federalismo e Politicas Sociais no Brasil: Problemas de coordenacao e autonomia. Sao Paulo em Perspectiva, 18, 17-26.
[16] Abrucio, F.L. (2005) Os Avancos e os Dilemas do Modelo Pos-BurocrAtico: A reforma da administracao publica a luz da experiencia internacional recente. In: Bresser Pereira, L.C. and Spink, P.K., Eds., Reforma do Estado e Administracao Publica Gerencial, 6th Edition, FGV, Rio de Janeiro, 173-200.
[17] Oliveira, R.O. (2004) Desenvolvimento e participacao: O caso dos Conselhos Municipais de Desenvolvimento Rural do Estado de Sao Paulo. Campinas, 126 p.
[18] Carvalho, J.C., Carneiro, S., Cavalcante, H.C., Rolla, S.R., Mendes, A.N.G., Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T. (2008) Apresentacao do Zoneamento Ecologico-Economico do Estado de Minas Gerais. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento ecologico-economico do Estado de Minas Gerais: zoneamento e cenArios exploratorios, Editora UFLA, Lavras, 1-6, 8.
[19] Pereira, J.R. (2008) Carta de Potencialidade Social. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento Ecologico-Economico do Estado de Minas Gerais: Componente socioeconomico, UFLA, Lavras, 167-195.
[20] Brasil Ministerio do Meio Ambiente, dos Recursos Hidricos e da Amazonia Legal (MMA) and Secretaria de Assuntos Estrategicos da Presidencia (SAE/PR) (1997) Detalhamento da Metodologia para Execucao do Zoneamento Ecologico-Economico pelos Estados da Amazonia Legal. MMA, SAE/PR, Laboratorio de Gestao do Territorio da Universidade Federal do Rio de Janeiro, Brasilia, 12.
[21] Scolforo, J.R., Oliveira, A.D., Carvalho, L.M.T., Marques, J.J.G., Louzada, J.N., Mello, C.R., Pereira, J.R., Rezende, J.B. and Vale, L.C.C. (2008) Zoneamento ecologico-economico de Minas Gerais. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento ecologico-economico do Estado de Minas Gerais: Zoneamento e cenArios exploratorios, UFLA, Lavras, 7-20.
[22] Pereira, J.R. (2008) Construcao dos Indicadores de Potencialidade Social. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento Ecologico-Economico do Estado de Minas Gerais: componente socioeconomico, UFLA, Lavras, 7-34.
[23] Pereira, J.R. (2008) Construcao dos Indicadores de Potencialidade Social. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento Ecologico-Economico do Estado de Minas Gerais: componente socioeconomico, UFLA, Lavras, 7-34.
[24] Pereira, J.R. (2008) Construcao dos Indicadores de Potencialidade Social. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento Ecologico-Economico do Estado de Minas Gerais: componente socioeconomico, UFLA, Lavras, 7-34.
[25] Pereira, J.R. (2008) Construcao dos Indicadores de Potencialidade Social. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento Ecologico-Economico do Estado de Minas Gerais: componente socioeconomico, UFLA, Lavras, 7-34.
[26] Bezerra, M.C.L., Facchina, M.M. and Ribas, O.T. (2002) Agenda 21 Brasileira: Resultado da consulta nacional. Ministerio do Meio Ambiente, Programa das Nacoes Unidas para o Desenvolvimento, Brasilia, 26.
[27] Pereira, J.R. (2008) Carta de Potencialidade Social. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento Ecologico-Economico do Estado de Minas Gerais: Componente socioeconomico, UFLA, Lavras, 167-195.
[28] Pereira, J.R. (2008) Carta de Potencialidade Social. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento Ecologico-Economico do Estado de Minas Gerais: Componente socioeconomico, UFLA, Lavras, 167-195.
[29] Brasil (2005) Lei no 11.107, de 06 de abril de 2005. Dispoes sobre normas gerais de contratacao de consorcios publicos e da outras providencias. Senado Federal, Brasilia, DF.
[30] FJP (2011) Indice Mineiro de Responsabilidade Social—IMRS. Fundacao Joao Pinheiro, Belo Horizonte.
http://www.fjp.mg.gov.br
[31] Vilhena, R., Martins, H.F., Marini, C. and Guimaraes, T.B. (2006) O Choque de Gestao em Minas Gerais: Politicas da gestao publica para o desenvolvimento. UFMG, Belo Horizonte, 363 p.
[32] Minas Gerais (2005) Secretaria de Estado do Meio Ambiente e Desenvolvimento SustentAvel (SEMAD). Gestao Ambiental no Seculo XXI (PE 17): Termo de referencia SAT/DIZON no 001/05. SEMAD/MG, Belo Horizonte.
[33] Carvalho, J.C., Carneiro, S., Cavalcante, H.C., Rolla, S.R., Mendes, A.N.G., Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T. (2008) Apresentacao do Zoneamento Ecologico-Economico do Estado de Minas Gerais. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento ecologico-economico do Estado de Minas Gerais: Zoneamento e cenArios exploratorios, Editora UFLA, Lavras, 1-6.
[34] Carvalho, J.C., Carneiro, S., Cavalcante, H.C., Rolla, S.R., Mendes, A.N.G., Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T. (2008) Apresentacao do Zoneamento Ecologico-Economico do Estado de Minas Gerais. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento ecologico-economico do Estado de Minas Gerais: Zoneamento e cenArios exploratorios, Editora UFLA, Lavras, 1-6.
[35] Sen, A.K. (2000) Desenvolvimento como Liberdade. Companhia das Letras, Sao Paulo, 409 p.
[36] Scolforo, J.R., Oliveira, A.D., Carvalho, L.M.T., Marques, J.J.G., Louzada, J.N., Mello, C.R., Pereira, J.R., Rezende, J.B. and Vale, L.C.C. (2008) Zoneamento ecologico-economico de Minas Gerais. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento ecologico-economico do Estado de Minas Gerais: Zoneamento e cenArios exploratorios, UFLA, Lavras, 245.
[37] Pereira, J.R. (2008) Carta de Potencialidade Social. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento Ecologico-Economico do Estado de Minas Gerais: componente socioeconomico, UFLA, Lavras, 167-195.
[38] Salazar, G.T., Oliveira, E.R., Silva, S.S., Arruda, M.A., Rocha, P.A.M. and Rodrigues, L.A. (2008) Componente Institucional. In: Scolforo, J.R., Oliveira, A.D. and Carvalho, L.M.T., Eds., Zoneamento ecologico-economico do Estado de Minas Gerais: Componente socioeconomico. UFLA, Lavras, 101-140, 129.
[39] FJP (2011) Indice Mineiro de Responsabilidade Social—IMRS. Fundacao Joao Pinheiro, Belo Horizonte.
http://www.fjp.mg.gov.br
[40] FJP (2011) Indice Mineiro de Responsabilidade Social—IMRS. Fundacao Joao Pinheiro, Belo Horizonte.
http://www.fjp.mg.gov.br                                                                                                          eww150128lx

Plant Breeding for Harmony between Modern Agriculture Production and the Environment

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53313#.VLyl48nQrzE

ABSTRACT

The world population is estimated to be 9.2 billion in 2050. To sufficiently feed these people, the total food production will have to increase 60% – 70%. Climate models predict that warmer tem-peratures and increases in the frequency and duration of drought during the present century will have negative impact on agricultural productivity. These new global challenges require a more complex integrated agricultural and breeding agenda that focuses on livelihood improvement coupled with agro-ecosystem resilience, eco-efficiency and sustainability rather than just on crop productivity gains. Intensifying sustainability agro-ecosystems by producing more food with lower inputs, adapting agriculture to climate change, conserving agro-biodiversity through its use, and making markets to work for the small farmers are needed to address the main issues of our time. Plant breeding has played a vital role in the successful development of modern agriculture. Development of new cultivars will be required while reducing the impact of agriculture on the environment and maintaining sufficient production. Conventional plant breeding will remain the backbone of crop improvement strategies. Genetic engineering has the potential to address some of the most challenging biotic constraints faced by farmers, which are not easily addressed through conventional plant breeding alone. Protective measures and laws, especially patenting, must be moderated to eliminate coverage so broad that it stifles innovation. They must be made less restrictive to encourage research and free flow of materials and information. Small farmers have an important role in conserving and using crop biodiversity. Public sector breeding must remain vigorous, especially in areas where the private sector does not function. This will often require benevolent public/private partnerships as well as government support. Active and positive connections between the private and public breeding sectors and large-scale gene banks are required to avoid a possible conflict involving breeders’ rights, gene preservation and erosion. Plant breeding can be a powerful tool to bring “harmony” between agriculture and the environment, but partnerships and cooperation are needed to make this a reality.

Cite this paper

Dias, J. (2015) Plant Breeding for Harmony between Modern Agriculture Production and the Environment. Agricultural Sciences, 6, 87-116. doi: 10.4236/as.2015.61008.

References

[1] Jaggard, K.W., Qi, A.M. and Ober, E.S. (2010) Possible Changes to Arable Crop Yields by 2050. Philosophical Transactions of the Royal Society B: Biological Sciences, 365, 2835-2851. http://dx.doi.org/10.1098/rstb.2010.0153
[2] FAO (2012) The State of the World Population Report. By Choice, Not by Chance: Family Planning, Human Rights and Development. United Nations Population Fund, New York.
[3] da Silva Dias, J.C. (2014) Guiding Strategies for Breeding Vegetable Cultivars. Agricultural Sciences, 5, 9-32. http://dx.doi.org/10.4236/as.2014.51002
[4] Dias, J.S. and Ryder, E.J. (2011) World Vegetable Industry: Production, Breeding, Trends. Horticultural Reviews, 38, 299-356.
[5] Dias, J.S. (2012) Chapter 1. Vegetable Breeding for Nutritional Quality and Health Benefits. In: Carbone, K., Ed., Cultivars: Chemical Properties, Antioxidant Activities and Health Benefits, Nova Science Publishers, Inc., Hauppauge, 1-81.
[6] Tilman, D., Balzer, C., Hill, J. and Befort, B.L. (2011) Global Food Demand and the Sustainable Intensification of Agriculture. Proceedings of the National Academy of Sciences of the United States of America, 108, 20260-20264. http://dx.doi.org/10.1073/pnas.1116437108
[7] Alexandratos, N. and Bruinsma, J. (2012) World Agriculture towards 2030/2050: The 2012 Revision. Paper No. 12-03, Food and Agriculture Organization (FAO), Rome.
[8] FAO (2012) How to Feed the World in 2050. FAO, Rome.
[9] Delgado, C.L. (2003) Rising Consumption of Meat and Milk in Developing Countries Has Created a New Food Revolution. Journal of Nutrition, 133, 3907S-3910S.
[10] Kastner, T., Rivas, M.J.I., Koch, W. and Nonhebel, S. (2012) Global Changes in Diets and the Consequences for Land Requirements for Food. Proceedings of the National Academy of Sciences of the United States of America, 109, 6868-6872. http://dx.doi.org/10.1073/pnas.1117054109
[11] Delgado, C.L. (1999) Livestock to 2020: The Next Food Revolution. Food, Agriculture, and the Environment Discussion Paper No. 28, International Food Policy Research Institute, Washington DC.
[12] The Royal Society (2009) Reaping the Benefits: Science and the Sustainable Intensification of Global Agriculture. The Royal Society Policy Document 11/09, The Royal Society, London.
[13] Naylor, R., Steinfeld, H., Falcon, W., Galloway, J., Smil, V., Bradford, E., Alder, J. and Mooney, H. (2005) Losing the Links between Livestock and Land. Science, 310, 1621-1622.
[14] Gerbens-Leenes, P. and Nonhebel, S. (2002) Consumption Patterns and Their Effects on Land Required for Food. Ecological Economics, 42, 185-199.
http://dx.doi.org/10.1016/S0921-8009(02)00049-6
[15] Wirsenius, S., Azar, C. and Berndes, G. (2010) How Much Land Is Needed for Global Food Production under Scenarios of Dietary Changes and Livestock Productivity Increases in 2030? Agricultural Systems, 103, 621-638. http://dx.doi.org/10.1016/j.agsy.2010.07.005
[16] Pimentel, D. and Pimentel, M. (2003) Sustainability of Meat-Based and Plant-Based Diets and the Environment. American Journal of Clinical Nutrition, 78, 660S-663S.
[17] Foley, J.A., Ramankutty, N., Brauman, K.A., Cassidy, E.S., Gerber, J.S., Johnston, M., Mueller, N.D., O’Connell, C., Ray, D.K., West, P.C., Balzer, C., Bennett, E.M., Carpenter, S.R., Hill, J., Monfreda, C., Polasky, S., Rockstr?m, J., Sheehan, J., Siebert, S., Tilman, D. and Zaks, D.P. (2011) Solutions for a Cultivated Planet. Nature, 478, 337-342. http://dx.doi.org/10.1038/nature10452
[18] Steinfeld, H., Gerber, P., Wassenaar, T., Castel, V., Rosales, M. and De Haan, C. (2006) Livestock’s Long Shadow: Environmental Issues and Options. FAO, Rome.
[19] Mekonnen, M.M. and Hoekstra, A.Y. (2012) A Global Assessment of the Water Footprint of Farm Animal Products. Ecosystems, 15, 401-415. http://dx.doi.org/10.1007/s10021-011-9517-8
[20] World Watch Institute (2010) Biofuel Production Up Despite Economic Downturn Vital Signs. World Watch Institute, New York.
[21] Food and Agricultural Policy Research Institute (FAPRI) (2011) World Biofuels: FAPRI-ISU 2011 Agricultural Outlook. FAPRI, Ames.
[22] FAO (2013) FAO Statistical Yearbook—Land Use. FAOSTAT, FAO, Rome, PA4.
[23] Kucharik, C.J. and Serbin, S.P. (2008) Impact of Recent Climate Change on Wisconsin Corn and Soybean Yield Trends. Environmental Research Letters, 3, Article ID: 034003, 10 p.
[24] Battisti, D.S. and Naylor, R.L. (2009) Historical Warnings of Future Food Insecurity with Unprecedented Seasonal Heat. Science, 323, 240-244. http://dx.doi.org/10.1126/science.1164363
[25] Schlenker, W. and Lobell, D.B. (2010) Robust Negative Impacts of Climate Change on African Agriculture. Environmental Research Letters, 5, Article ID: 014010, 8 p.
[26] Roudier, P., Sultan, B., Quirion, P. and Berg, A. (2011) The Impact of Future Climate Change on West African Crop Yields: What Does the Recent Literature Say? Global Environmental Change, 21, 1073-1083. http://dx.doi.org/10.1016/j.gloenvcha.2011.04.007
[27] Lobell, D.B., Schlenker, W. and Costa-Roberts, J. (2011) Climate Trends and Global Crop Production since 1980. Science, 333, 616-620. http://dx.doi.org/10.1126/science.1204531
[28] Lobell, D.B., Banziger, M., Magorokosho, C. and Vivek, B. (2011) Nonlinear Heat Effects on African Maize as Evidenced by Historical Yield Trials. Nature Climate Change, 1, 42-45. http://dx.doi.org/10.1038/nclimate1043
[29] Schlenker, W. and Roberts, M.J. (2009) Nonlinear Temperature Effects Indicate Severe Damages to US Crop Yields under Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 106, 15594-15598. http://dx.doi.org/10.1073/pnas.0906865106
[30] Gupta, R., Gopal, R., Jat, M.L., Jat, R.K., Sidhu, H.S., Minhas, P.S. and Malik, R.K. (2010) Wheat Productivity in Indo-Gangetic Plains of India during 2010: Terminal Heat Effects and Mitigation Strategies. PACA Newsletter, 14, 1-11.
[31] Asseng, S., Foster, I. and Turner, N.C. (2011) The Impact of Temperature Variability on Wheat Yields. Global Change Biology, 17, 997-1012. http://dx.doi.org/10.1111/j.1365-2486.2010.02262.x
[32] Lobell, D.B., Sibley, A. and Ortiz-Monasterio, J.I. (2012) Extreme Heat Effects on Wheat Senescence in India. Nature Climate Change, 2, 186-189. http://dx.doi.org/10.1038/nclimate1356
[33] Bell, G. and Collins, S. (2008) Adaptation, Extinction and Global Change. Evolutionary Applications, 1, 3-16.
[34] Kelly, A.E. and Goulden, M.L. (2008) Rapid Shifts in Plant Distribution with Recent Climate Change. Proceedings of the National Academy of Sciences of the United States of America, 105, 11823-11826.
http://dx.doi.org/10.1073/pnas.0802891105
[35] Shanthi-Prabha, V., Sreekanth, N.P., Babu, P.K. and Thomas, A.P. (2011) The Trilemma of Soil Carbon Degradation, Climate Change and Food Insecurity. Disaster Risk and Vulnerability Conference 2011, The Applied Geoinformatics for Society and Environment, Germany, 107-112.
[36] Gregory, P.J., Johnson, S.N., Newton, A.C. and Ingram, J.S.I. (2009) Integrating Pests and Pathogens into the Climate Change/Food Security Debate. Journal of Experimental Botany, 60, 2827-2838. http://dx.doi.org/10.1093/jxb/erp080
[37] Patz, J.A. and Kovats, R.S. (2002) Hot Spots in Climate Change and Human Health: Present and Future Risks. Lancet, 368, 859-869.
[38] Mcmichael, A., Woodruff, R.E. and Hales, S. (2006) Climate Change and Human Health: Present and Future Risks. Lancet, 367, 859-869. http://dx.doi.org/10.1016/S0140-6736(06)68079-3
[39] Ziska, L.H., Epstein, P.R. and Schlesinger, W.H. (2009) Rising CO2, Climate Change, and Public Health: Exploring the Links to Plant Biology. Environmental Health Perspectives, 117, 155-158. http://dx.doi.org/10.1289/ehp.11501
[40] Borlaug, N. (1983) Contributions of Conventional Plant Breeding to Food Production. Science, 219, 689-693. http://dx.doi.org/10.1126/science.219.4585.689
[41] Trethowan, R.M., Reynolds, M.P., Ortiz-Monasterio, I. and Ortiz, R. (2007) The Genetic Basis of the Green Revolution in Wheat Production. Plant Breeding Reviews, 28, 39-58.
http://dx.doi.org/10.1002/9780470168028.ch2
[42] Evenson, R.E. and Gollin, D. (2003) Assessing the Impact of the Green Revolution, 1960 to 2000. Science, 300, 758-762. http://dx.doi.org/10.1126/science.1078710
[43] Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. (2002) Agricultural Sustainability and Intensive Production Practices. Nature, 418, 671-677. http://dx.doi.org/10.1038/nature01014
[44] Burney, J.A., Davis, S.J. and Lobell, D.B. (2010) Greenhouse Gas Mitigation by Agricultural Intensification. Proceedings of the National Academy of Sciences of the United States of America, 107, 12052-12057. http://dx.doi.org/10.1073/pnas.0914216107
[45] Edgerton, M.D. (2009) Increasing Crop Productivity to Meet Global Needs for Feed, Food, and Fuel. Plant Physiology, 149, 7-13. http://dx.doi.org/10.1104/pp.108.130195
[46] IAASTD (2009) Agriculture at the Crossroads. International Assessment of Agricultural Knowledge, Science and Technology for Development (IAASTD). Island Press, Washington DC.
[47] Harlan, J.R. (1992) Crops and Man. American Society of Agronomy and Crop Science Society of America, Madison.
[48] Pratt, R.C. (2004) An Historical Examination of the Development and Adoption of Hybrid Corn: A Case Study in Ohio. Maydica, 49, 155-172.
[49] Dias, J.S. (2011) Biodiversity and Vegetable Breeding in the Light of Developments in Intellectual Property Rights. In: Grillo, O. and Verona, G., Eds., Ecosystems Biodiversity, Chapter 17, INTECH publisher, Rijeka, 389-428.
[50] Dias, J.S. (2012) Impact of the Vegetable Breeding Industry and Intellectual Property Rights in Biodiversity and Food Security. In: Jones, A.M. and Hernandez, F.E., Eds., Food Security: Quality, Management, Issues and Economic Implications, Nova Science Publishers Inc., Hauppauge, 57-86.
[51] Dias, J.S. (2013) Impact of Vegetable Breeding Industry and Intellectual Property Rights in Food Security. In: Nath, P., Ed., The Basics of Human Civilization-Food, Agriculture and Humanity, Vol. I. Present Scenario, Prem Nath Agricultural Science Foundation (PNASF), Bangalore & New India Publishing Agency (NIPA), New Delhi, 173-198.
[52] Dias, J.S. and Ryder, E. (2012) Impact of Plant Breeding on the World Vegetable Industry. Acta Horticulturae, 935, 13-22.
[53] Dias, J.S. (2010) Impact of Improved Vegetable Cultivars in Overcoming Food Insecurity. In: Nath, P. and Gaddagimath, P.B., Eds., Horticulture and Livelihood Security, Scientific Publishers, New Dehli, 303-339.
[54] Dias, J.S. and Ortiz, R. (2012) Transgenic Vegetable Crops: Progress, Potentials and Prospects. Plant Breeding Reviews, 35, 151-246.
[55] Dias, J.S. (1989) The Use of Molecular Markers in Selection of Vegetables. SECH, Actas de Horticultura, 3, 175-181.
[56] Dias, J.S. (1991) The Use of Computers in Plant Breeding. SECH, Actas de Horticultura, 8, 367-371.
[57] Dias, J.S. and Ortiz, R. (2012) Transgenic Vegetable Breeding for Nutritional Quality and Health Benefits. Food and Nutrition Sciences, 3, 1209-1219. http://dx.doi.org/10.4236/fns.2012.39159
[58] Dias, J.S. and Ortiz, R. (2013) Transgenic Vegetables for Southeast Asia. In: Holmer, R., Linwattana, G., Nath, P. and Keatinge, J.D.H., Eds., Proceedings. Regional Symposium on High Value Vegetables in Southeast Asia: Production, Supply and Demand (SEAVEG 2012), Chiang Mai, 24-26 January 2012, 361-369.
[59] Dias, J.S. and Ortiz, R. (2013) Transgenic Vegetables for 21st Century Horticulture. Acta Horticulturae, 974, 15-30.
[60] Dias, J.C. (2010) Impact of Improved Vegetable Cultivars in Overcoming Food Insecurity. Euphytica, 176, 125-136. http://dx.doi.org/10.1007/s10681-010-0237-5
[61] Tilman, D. (1999) Global Environmental Impacts of Agricultural Expansion: The Need for Sustainable and Efficient Practices. Proceedings of the National Academy of Sciences of the United States of America, 96, 5995-6000. http://dx.doi.org/10.1073/pnas.96.11.5995
[62] Robertson, G.P. and Swinton, S.M. (2005) Reconciling Agricultural Productivity and Environmental Integrity: A Grand Challenge for Agriculture. Frontiers in Ecology and the Environment, 3, 38-46.
http://dx.doi.org/10.1890/1540-9295(2005)003%5B0038:RAPAEI%5D2.0.CO;2
[63] Hirel, B., Le Gouis, J., Ney, B. and Gallais, A. (2007) The Challenge of Improving Nitrogen Use Efficiency in Crop Plants: Towards a More Central Role for Genetic Variability and Quantitative Genetics within Integrated Approaches. Journal of Experimental Botany, 58, 2369-2387. http://dx.doi.org/10.1093/jxb/erm097
[64] Foulkes, M.J., Hawkesford, M.J., Barraclough, P.B., Holdsworth, M.J., Kerr, S., Kightley, S. and Shewry, P.R. (2009) Identifying Traits to Improve the Nitrogen Economy of Wheat: Recent Advances and Future Prospects. Field Crops Research, 114, 329-342. http://dx.doi.org/10.1016/j.fcr.2009.09.005
[65] Korkmaz, K., Ibrikci, H., Karnez, E., Buyuk, G., Ryan, J., Ulger, A.C. and Oguz, H. (2009) Phosphorus Use Efficiency of Wheat Genotypes Grown in Calcareous Soils. Journal of Plant Nutrition, 32, 2094-2106. http://dx.doi.org/10.1080/01904160903308176
[66] Farooq, M., Kobayashi, N., Wahid, A., Ito, O. and Basra, S.M.A. (2009) Strategies for Producing More Rice with Less Water. Advances in Agronomy, 101, 351-388.
http://dx.doi.org/10.1016/S0065-2113(08)00806-7
[67] Shi, W., Moon, C.D., Leahy, S.C., Kang, D., Froula, J., Kittelmann, S., Fan, C., Deutsch, S., Gagic, D., Seedorf, H., Kelly, W.J., Atua, R., Sang, C., Soni, P., Li, D., Pinares-Patino, C.S., Mcewan, J.C., Janssen, P.H., Chen, F., Visel, A., Wang, Z., Attwood, G.T. and Rubin, E.M. (2014) Methane Yield Phenotypes Linked to Differential Gene Expression in the Sheep Rumen Microbiome. Genome Research, 24, 1517-1525. http://dx.doi.org/10.1101/gr.168245.113
[68] Shrawat, A.K. and Good, A.G. (2008) Genetic Engineering Approaches to Improving Nitrogen Use Efficiency. Plant Research News. ISB Report, May 2008. Information Systems for Biotechnology (ISB) News Report, Blackburg.
http://www.isb.vt.edu/news/2008/news08.may.htm#may0801
[69] Daemrich, A., Reinhardt, F. and Shelman, M. (2008) Arcadia Biosciences: Seeds of Change. Harvard Business School, Boston.
[70] Subbarao, G.V., Tomohiro, B., Masahiro, K., Osamu, I., Samejima, H., Wang, H.Y., Pearse, S.J., Gopalakrishnan, S., Nakahara, K., Zakir Hossain, A.K.M., Tsujimoto, H. and Berry, W.L. (2007) Can Biological Nitrification Inhibition (BNI) Genes from Perennial Leymus racemosus (Triticeae) Combat Nitrification in Wheat Farming? Plant and Soil, 299, 55-64. http://dx.doi.org/10.1007/s11104-007-9360-z
[71] IPCC (Intergovernmental Panel on Climate Change) (2009) The Physical Science Basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L., Eds., Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press, Cambridge.
[72] Ortiz, R., Sayre, K.D., Govaerts, B., Gupta, R., Subbarao, G.V., Ban, T., Hodson, D., Dixon, J.M., Ortiz-Monasterio, J.I. and Reinolds, M. (2008) Climate Change: Can Wheat Beat the Heat? Agriculture, Ecosystems & Environment, 126, 46-58. http://dx.doi.org/10.1016/j.agee.2008.01.019
[73] Araus, J., Slafer, G., Royo, C. and Serret, M.D. (2008) Breeding for Yield Potential and Stress Adaptation in Cereals. Critical Reviews in Plant Sciences, 27, 377-412.
http://dx.doi.org/10.1080/07352680802467736
[74] Cattivelli, L., Rizza, F., Badeck, F.W., Mazzucoteli, E., Mastrangelo, A.M., Francia, E., Marè, C., Tondelli, A. and Stanca, A.M. (2008) Drought Tolerance Improvement in Crop Plants: An Integrated View from Breeding to Genomics. Field Crops Research, 105, 1-14. http://dx.doi.org/10.1016/j.fcr.2007.07.004
[75] Ceccarelli, S. and Grando, S. (2007) Decentralized-Participatory Plant Breeding: An Example of Demand Driven Research. Euphytica, 155, 349-360. http://dx.doi.org/10.1007/s10681-006-9336-8
[76] Burke, M.B., Lobell, D.B. and Guarino, L. (2009) Shifts in African Crop Climates by 2050, and the Implications for Crop Improvement and Genetic Resources Conservation. Global Environmental Change, 19, 317-325. http://dx.doi.org/10.1016/j.gloenvcha.2009.04.003
[77] Jarvis, D.I., Brown, A.H.D., Cuong, P.H., Collado-Panduro, L., Latoumerie-Moreno, L., Gyawali, S., Tanto, T., Sawadogo, M., Mar, I., Sadiki, M., Hue, N.T., Arias-Reyes, L., Balma, D., Bajracharya, J., Castillo, F., Rijal, D., Belqadi, L., Rana, R., Saidi, S., Quedraogo, J., Zangre, R., Rhrib, K., Chavez, J.L., Schoen, D., Shapit, B., Santis, P.D., Fadda, C. and Hodgkin, T. (2008) A Global Perspective of the Richness and Evenness of Traditional Crop-Variety Diversity Maintained by Farming Communities. Proceedings of the National Academy of Sciences of the United States of America, 105, 5326-5331. http://dx.doi.org/10.1073/pnas.0800607105
[78] Witcombe, J.R., Hollington, P.A., Howarth, C.J., Reader, S. and Steele, K.A. (2008) Breeding for Abiotic Stresses for Sustainable Agriculture. Philosophical Transactions of the Royal Society B: Biological Sciences, 363, 703-716. http://dx.doi.org/10.1098/rstb.2007.2179
[79] Bhatnagar-Mathur, P., Vadez, V. and Sharma, K.K. (2007) Transgenic Approaches for Abiotic Stress Tolerance in Plants: Retrospect and Prospects. Plant Cell Reports, 27, 411-424. http://dx.doi.org/10.1007/s00299-007-0474-9
[80] Ainsworth, E., Rogers, A. and Leakey, A.D.B. (2008) Targets for Crop Biotechnology in a Future High-CO2 and High-O3 World. Plant Physiology, 147, 13-19. http://dx.doi.org/10.1104/pp.108.117101
[81] Ortiz, R. (2008) Crop Genetic Engineering under Global Climate Change. Annals of Arid Zone, 47, 343-354.
[82] Jewell, M.C., Campbell, B.C. and Godwin, I.D. (2010) Transgenic Plants for Abiotic Stress Resistance. In: Kole, C., Michler, C.H., Abbott, A.G. and Hall, T.C., Eds., Transgenic Crop Plants, Springer-Verlag, Berlin-Heidelberg, 67-132.
[83] Dwivedi, S.L., Upadhyaya, H., Subudhi, P., Gehring, C., Bajic, V. and Ortiz, R. (2010) Enhancing Abiotic Stress Tolerance in Cereals through Breeding and Transgenic Interventions. Plant Breeding Reviews, 33, 31-114.
[84] Dwivedi, S.L., Sahrawat, K., Upadhyaya, H. and Ortiz, R. (2013) Food, Nutrition and Agrobiodiversity under Global Climate Change. Advances in Agronomy, 120, 1-128. http://dx.doi.org/10.1016/B978-0-12-407686-0.00001-4
[85] Ruane, J., Sonnino, A., Steduto, P. and Deane, C. (2008) Coping with Water Scarcity: What Role for Biotechnologies? Land and Water Discussion Paper 7, Food and Agriculture Organization of the United Nations, Rome.
[86] Sakuma, Y., Maruyama, K., Qin, F., Osakabe, Y., Shinozaki, K. and Yamaguchi-Shinozaki, K. (2006) Dual Function of an Arabidopsis Transcription Factor DREB2A in Water-Stress-Responsive and Heat-Stress-Responsive Gene Expression. Proceedings of the National Academy of Sciences of the United States of America, 103, 18822-18827. http://dx.doi.org/10.1073/pnas.0605639103
[87] Ortiz, R., Iwanaga, M., Reynolds, M.P., Wu, X. and Crouch, J.H. (2007) Overview on Crop Genetic Engineering for Drought-Prone Environments. Journal of SAT Agricultural Research, 4, 1-30.
[88] Pellegrineschi, A., Reynolds, M., Pacheco, M., Brito, R.M., Almeraya, R., Yamaguchi-Shinozaki, K. and Hoisington, D. (2004) Stress-Induced Expression in Wheat of the Arabidopsis thaliana DREB1A Gene Delays Water Stress Symptoms under Greenhouse Conditions. Genome, 47, 493-500. http://dx.doi.org/10.1139/g03-140
[89] Saint Pierre, C.S., Crossa, J.L., Bonnett, D., Yamaguchi-Shinozaki, K. and Reynolds, M.P. (2012) Phenotyping Transgenic Wheat for Drought Resistance. Journal of Experimental Botany, 63, 1799-1808. http://dx.doi.org/10.1093/jxb/err385
[90] Mumms, R. (2005) Genes and Salt Tolerance: Bringing Them Together. New Phytologist, 167, 645-663. http://dx.doi.org/10.1111/j.1469-8137.2005.01487.x
[91] Chinnusamy, V., Jagendorf, A. and Zhu, J.K. (2005) Understanding and Improving Salt Tolerance in Plants. Crop Science, 45, 437-448. http://dx.doi.org/10.2135/cropsci2005.0437
[92] Wu, H.J., Zhang, Z., Wang, J.Y., Oh, D.H., Dassanayake, M., Liu, B., Huang, Q., Sun, H.X., Xia, R., Wu, Y., Wang, Y.N., Yang, Z., Liu, Y., Zhang, W., Zhang, H., Chu, J., Yan, C., Fang, S., Zhang, J., Wang, Y., Zhang, F., Wang, G., Yeol Lee, S., Cheeseman, J.M., Yang, B., Li, B., Min, J., Yang, L., Wang, J., Chu, C., Chen, S.Y., Bohnert, H.J., Zhu, J.K., Wang, X.J. and Xie, Q. (2012) Insights into Salt Tolerance from the Genome of Thellungiella salsuginea. Proceedings of the National Academy of Sciences of the United States of America, 109, 12219-12224. http://dx.doi.org/10.1073/pnas.1209954109
[93] Plett, D., Safwat, G., Gilliham, M., Skrumsager-Moller, I., Roy, S., Shirley, N., Jacobs, A., Johnson, A. and Tester, M. (2010) Improved Salinity Tolerance of Rice through Cell Type-Specific Expression of Athkt1;1. PLoS ONE, 5, e12571. http://dx.doi.org/10.1371/journal.pone.0012571
[94] Moghaieb, R.E., Nakamura, A., Saneoka, H. and Fujita, K. (2011) Evaluation of Salt Tolerance in Ectoine-Transgenic Tomato Plants (Lycopersicon esculentum) in Terms of Photosynthesis, Osmotic Adjustment, and Carbon Partitioning. GM Crops, 2, 58-65. http://dx.doi.org/10.4161/gmcr.2.1.15831
[95] Lybbert, T. and Sumner, D. (2011) Agricultural Technologies for Climate Change Mitigation and Adaptation in Developing Countries: Policy Options for Innovation and Technology Diffusion. ICTSD-IPC Platform on Climate Change. Agriculture and Trade Issues Brief 6. International Centre for Trade and Sustainable Development, Geneva, Switzerland.
[96] Varshney, R.K., Bansal, K.C., Aggarwal, P.K., Datta, S.K. and Craufurd, P.Q. (2011) Agricultural Biotechnology for Crop Improvement in a Variable Climate: Hope or Hype? Trends in Plant Science, 16, 363-371. http://dx.doi.org/10.1016/j.tplants.2011.03.004
[97] Yamori, W., Hikosaka, K. and Way, D.A. (2013) Temperature Response of Photosynthesis in C3, C4, and CAM Plants: Temperature Acclimation and Temperature Adaptation. Photosynthesis Research, 119, 101-117. http://dx.doi.org/10.1007/s11120-013-9874-6
[98] Ainsworth, E.A. and Ort, D.R. (2010) How Do We Improve Crop Production in a Warming World? Plant Physiology, 154, 526-530. http://dx.doi.org/10.1104/pp.110.161349
[99] Wahid, A., Gelani, S., Ashraf, M. and Foolad, M.R. (2007) Heat Tolerance in Plants: An Overview. Environmental and Experimental Botany, 61, 199-223.
http://dx.doi.org/10.1016/j.envexpbot.2007.05.011
[100] Hasanuzzaman, M., Nahar, K., Alam, Md., Roychowdhury, R. and Fujita, M. (2013) Physiological, Biochemical, and Molecular Mechanisms of Heat Stress Tolerance in Plants. International Journal of Molecular Sciences, 14, 9643-9684. http://dx.doi.org/10.3390/ijms14059643
[101] Gao, H., Brandizzi, F., Benning, C. and Larkin, R.M. (2008) A Membrane-Tethered Transcription Factor Defines a Branch of the Heat Stress Response in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America, 105, 16398-16403. http://dx.doi.org/10.1073/pnas.0808463105
[102] Gusta, L. (2012) Abiotic Stresses and Agricultural Sustainability. Journal of Crop Improvement, 26, 415-427. http://dx.doi.org/10.1080/15427528.2011.650296
[103] Katiyar-Agarwal, S., Agarwal, M. and Grover, A. (2003) Heat-Tolerant Basmati Rice Engineered by Over-Expression of hsp101. Plant Molecular Biology, 51, 677-686.
http://dx.doi.org/10.1023/A:1022561926676
[104] Pimentel, D. (1997) Techniques for Reducing Pesticide Use: Economic and Environmental Bene?ts. Wiley, New York.
[105] Oerke, E.C., Dehne, H.W., Schonbeck, F. and Weber, A. (1994) Crop Production and Crop Protection: Estimated Losses in Major Food and Cash Crops. Elsevier, Amsterdam.
[106] Tripathi, L., Mwaka, H., Tripathi, J.N. and Tushemereirwe, W. (2010) Expression of Sweet Pepper Hrap Gene in Banana Enhances Resistance to Xanthomonas campestris pv. Musacearum. Molecular Plant Pathology, 11, 721-731.
[107] Ortiz, R., Jarvis, A., Aggarwal, P.K. and Campbell, B.M. (2014) Plant Genetic Engineering, Climate Change and Food Security. CCAFS Working Paper No. 72. CGIAR Research Program on Climate Change, Agriculture and Food Security (CCAFS), Copenhagen.
[108] Haverkort, A.J., Boonekamp, P.M., Hutten, R., Jacobsen, E., Lotz, L.A.P., Kessel, G.J.T., Visser, R.F.G. and Van Der Vossen, E.A.G. (2008) Societal Costs of Late Blight in Potato and Prospects of Durable Resistance through Cisgenic Modification. Potato Research, 51, 47-57.
http://dx.doi.org/10.1007/s11540-008-9089-y
[109] Jacobs, D.F. (2007) Toward Development of Silvical Strategies for Forest Restoration of American Chestnut (Castanea dentata) Using Blight Resistant Hybrids. Biological Conservation, 137, 497-506.
http://dx.doi.org/10.1016/j.biocon.2007.03.013
[110] Santini, A., La Porta, N., Ghelardini, L. and Mittempergher, L. (2007) Breeding against Dutch Elm Disease Adapted to the Mediterranean Climate. Euphytica, 163, 45-56.
http://dx.doi.org/10.1007/s10681-007-9573-5
[111] Bouton, J. (2007) The Economic Benefits of Forage Improvement in the United States. Euphytica, 154, 263-270. http://dx.doi.org/10.1007/s10681-006-9220-6
[112] Pimentel, D., Allen, J., Beers, A., Guinand, L., Linder, R., Mclaughlin, P., Meer, B., Musonda, D., Perdue, D., Poisson, S., Siebert, S., Stoner, K., Salazar, R. and Hawkinset, A. (1987) World Agriculture and Soil Erosion. Erosion Threatens World Food Production. Bioscience, 37, 277-283. http://dx.doi.org/10.2307/1310591
[113] Glover, J.D., Cox, C.M. and Reganold, J.P. (2007) Future Farming: A Return to Roots? Scientific American, 297, 82-89. http://dx.doi.org/10.1038/scientificamerican0807-82
[114] Jackson, W., Cox, S., Dehaan, L., Glover, J., Van Tassel, D. and Cox, C. (2009) The Necessity and Possibility of an Agriculture Where Nature Is the Measure. In: Bohlen, P.J. and House, G., Eds., Sustainable Agroecosystem Management, CRC Press, Boca Raton, 61-71.
[115] Blanco, H. and Lal, R., Eds. (2008) Principles of Soil Conservation and Management. Springer, New York.
[116] Olson, K.R., Ebelhar, S.A. and Lang, J.M. (2010) Cover Crops Effects on Crop Yields and Soil Organic Content. Soil Science, 175, 89-98. http://dx.doi.org/10.1097/SS.0b013e3181cf7959
[117] Kaumbutho, P. and Kienzle, J. (2008) Conservation Agriculture as Practiced in Kenya: Two Case Studies. Food and Agriculture Organization of the United Nations, Rome.
[118] Pretty, J.N. and Hine, R. (2001) Reducing Food Poverty with Sustainable Agriculture: A Summary of New Evidence. Final Report of the “SAFE-World” (The Potential of Sustainable Agriculture to Feed the World) Research Project. Centre for Environment and Society, University of Essex, Colchester.
[119] Kendle, A.D. and Rose, J.E. (2000) The Aliens Have Landed! What Are the Justifications for “Native Only” Policies in Landscape Plantings? Landscape and Urban Planning, 47, 19-31. http://dx.doi.org/10.1016/S0169-2046(99)00070-5
[120] Zhao, F.J. and Mcgrath, S.P. (2009) Biofortification and Phytoremediation. Current Opinion in Plant Biology, 12, 373-380. http://dx.doi.org/10.1016/j.pbi.2009.04.005
[121] Yin, X., Yuan, L., Liu, Y. and Lin, Z. (2012) Phytoremediation and Biofortification: Two Sides of One Coin. In: Yin, X. and Yuan, L., Eds., Phytoremediation and Biofortification, Springer Briefs in Green Chemistry for Sustainable, Springer, New York, 1-6.
[122] Pilon-Smits, E. (2005) Phytoremediation. Annual Review of Plant Biology, 56, 15-39.
http://dx.doi.org/10.1146/annurev.arplant.56.032604.144214
[123] Kramer, U. (2005) Phytoremediation: Novel Approaches to Cleaning up Polluted Soils. Current Opinion in Biotechnology, 16, 133-141. http://dx.doi.org/10.1016/j.copbio.2005.02.006
[124] Doty, S.L. (2008) Enhancing Phytoremediation through the Use of Transgenics and Endophytes. New Phytologist, 179, 318-333. http://dx.doi.org/10.1111/j.1469-8137.2008.02446.x
[125] Chaney, R.L., Angle, J.S., Broadhurst, C.L., Peters, C.A., Tappero, R.V. and Parks, D.L. (2007) Improved Understanding of Hyperaccumulation Yields Commercial Phytoextraction and Phytomining Technologies. Journal of Environmental Quality, 36, 1429-1443.
http://dx.doi.org/10.2134/jeq2006.0514
[126] Mcgrath, S.P. and Zhao, F.J. (2003) Phytoextraction of Metals and Metalloids from Contaminated Soils. Current Opinion in Biotechnology, 14, 277-282.
http://dx.doi.org/10.1016/S0958-1669(03)00060-0
[127] Murakami, M., Ae, N., Ishikawa, S., Ibaraki, T. and Ito, M. (2008) Phytoextraction by a High-Cd-Accumulating Rice: Reduction of Cd Content of Soybean Seeds. Environmental Science & Technology, 42, 6167-6172. http://dx.doi.org/10.1021/es8001597
[128] Ueno, D., Kono, I., Yokosho, K., Ando, T., Yano, M. and Ma, J.F. (2009) A Major Quantitative Trait Locus Controlling Cadmium Translocation in Rice (Oryza sativa). New Phytologist, 182, 644-653.
http://dx.doi.org/10.1111/j.1469-8137.2009.02784.x
[129] Grant, C.A., Clarke, J.M., Duguid, S. and Chaney, R.L. (2008) Selection and Breeding of Plant Cultivars to Minimize Cadmium Accumulation. Science of the Total Environment, 390, 301-310.
http://dx.doi.org/10.1016/j.scitotenv.2007.10.038
[130] Mcgrath, S.P., Lombi, E., Gray, C.W., Caille, N., Dunham, S.J. and Zhao, F.J. (2006) Field Evaluation of Cd and Zn Phytoextraction Potential by the Hyperaccumulators Thlaspi caerulescens and Arabidopsis halleri. Environmental Pollution, 141, 115-125. http://dx.doi.org/10.1016/j.envpol.2005.08.022
[131] Maxted, A.P., Black, C.R., West, H.M., Crout, N.M.J., Mcgrath, S.P. and Young, S.D. (2007) Phytoextraction of Cadmium and Zinc from Arable Soils Amended with Sewage Sludge Using Thlaspi caerulescens: Development of a Predictive Model. Environmental Pollution, 150, 363-372. http://dx.doi.org/10.1016/j.envpol.2007.01.021
[132] Zhao, F.J., Hamon, R.E., Lombi, E., Mclaughlin, M.J. and Mcgrath, S.P. (2002) Characteristics of Cadmium Uptake in Two Contrasting Ecotypes of the Hyperaccumulator Thlaspi caerulescens. Journal of Experimental Botany, 53, 535-543. http://dx.doi.org/10.1093/jexbot/53.368.535
[133] Kertulis-Tartar, G.M., Ma, L.Q., Tu, C. and Chirenje, T. (2006) Phytoremediation of an Arsenic-Contaminated Site Using Pteris vittata L.: Two-Year Study. International Journal of Phytoremediation, 8, 311-322. http://dx.doi.org/10.1080/15226510600992873
[134] Salido, A.L., Hasty, K.L., Lim, J.M. and Butcher, D.J. (2003) Phytoremediation of Arsenic and Lead in Contaminated Soil Using Chinese Brake Ferns (Pteris vittata) and Indian Mustard (Brassica juncea). International Journal of Phytoremediation, 5, 89-103. http://dx.doi.org/10.1080/713610173
[135] Dickinson, N.M. and Pulford, I.D. (2005) Cadmium Phytoextraction Using Short-Rotation Coppice Salix: The Evidence Trail. Environment International, 31, 609-613.
http://dx.doi.org/10.1016/j.envint.2004.10.013
[136] Wieshammer, G., Unterbrunner, R., Garcia, T.B., Zivkovic, M.F., Puschenreiter, M. and Wenzel, W.W. (2007) Phytoextraction of Cd and Zn from Agricultural Soils by Salix ssp. and Intercropping of Salix caprea and Arabidopsis halleri. Plant and Soil, 298, 255-264.
http://dx.doi.org/10.1007/s11104-007-9363-9
[137] Lievens, C., Yperman, J., Cornelissen, T. and Carleer, R. (2008) Study of the Potential Valorisation of Heavy Metal Contaminated Biomass via Phytoremediation by Fast Pyrolysis. Part II. Characterisation of the Liquid and Gaseous Fraction as a Function of the Temperature. Fuel, 87, 1906-1916. http://dx.doi.org/10.1016/j.fuel.2007.10.023
[138] Rooney, W., Blumenthal, J., Bean, B. and Mullet, J. (2007) Designing Sorghum as a Dedicated Bioenergy Feedstock. Biofuels, Bioproducts and Biorefining, 1, 147-157.
http://dx.doi.org/10.1002/bbb.15
[139] Jessup, R.W. (2009) Development and Status of Dedicated Energy Crops in the United States. In Vitro Cellular & Developmental Biology-Plant, 45, 282-290.
[140] Robertson, G.P., Dale, V.H., Doering, O.C., Hamburg, S.P., Melillo, J.M., Wander, M.M., Parton, W.J., Adler, P.R., Barney, J.N., Cruse, R.M., Duke, C.F., Fearnside, P.M., Follett, R.F., Gibbs, H.K., Goldemberg, J., Mladenoff, D.J., Ojima, D., Palmer, M.W., Sharpley, A., Wallace, L., Weathers, K.C., Wiens, J.A. and Wilhelm, W.W. (2008) Sustainable Biofuels Redux. Science, 322, 49-50. http://dx.doi.org/10.1126/science.1161525
[141] Cook, R.J. (2006) Toward Cropping Systems that Enhance Productivity and Sustainability. Proceedings of the National Academy of Sciences of the United States of America, 103, 18389-18394.
http://dx.doi.org/10.1073/pnas.0605946103
[142] Carpenter, J. (2011) Impacts of GM Crops on Biodiversity. GM Crops, 2, 7-23.
http://dx.doi.org/10.4161/gmcr.2.1.15086
[143] Icoz, I. and Stotzky, G. (2008) Fate and Effects of Insect-Resistant Bt Crops in Soil Ecosystems. Soil Biology and Biochemistry, 40, 559-586. http://dx.doi.org/10.1016/j.soilbio.2007.11.002
[144] Hoheisel, G.A. and Fleischer, S.J. (2007) Coccinelids, Aphids, and Pollen in Diversified Vegetable Fields with Transgenic and Isoline Cultivars. Journal of Insect Science, 7, 1-12.
http://dx.doi.org/10.1673/031.007.6101
[145] Leslie, T.W., Hoheisel, G.A., Biddinger, D.J., Rohr, J.R. and Fleisher, S.J. (2007) Transgenes Sustain Epigeal Insect Biodiversity in Diversified Vegetable Farm Systems. Environmental Entomology, 36, 234-244. http://dx.doi.org/10.1603/0046-225X(2007)36%5B234:TSEIBI%5D2.0.CO;2
[146] Jorgensen, R.B. and Andersen, B. (1994) Spontaneous Hybridization between Oilseed Rape (Brassica napus) and Weedy B. campestris (Brassicaceae): A Risk of Growing Genetically Modified Oilseed Rape. American Journal of Botany, 81, 1620-1626. http://dx.doi.org/10.2307/2445340
[147] Hansen, L.B., Siegismund, H.R. and Jorgensen, R.B. (2003) Progressive Introgression between Brassica napus (Oilseed Rape) and B. rapa. Heredity, 91, 276-283.
http://dx.doi.org/10.1038/sj.hdy.6800335
[148] Stewart Jr., C.N., Halfhill, M.D. and Warwick, S.I. (2003) Transgene Introgression from Genetically Modified Crops to Their Wild Relatives. Nature Reviews Genetics, 4, 806-817.
http://dx.doi.org/10.1038/nrg1179
[149] Brown, J. and Brown, A.P. (1996) Gene Transfer between Canola (Brassica napus and B. campestris) and Related Weed Species. Annals of Applied Biology, 129, 513-522.
http://dx.doi.org/10.1111/j.1744-7348.1996.tb05773.x
[150] Mikkelsen, T.R., Anderson, B. and Jorgensen, R.B. (1996) The Risk of Crop Transgene Spread. Nature, 380, 31. http://dx.doi.org/10.1038/380031a0
[151] Boudry, P., Broomberg, K., Saumitou-Laprade, P., Morchen, M., Cuegen, J. and Van Dijk, H. (1994) Gene Escape in Transgenic Sugar Beet: What Can Be Learned from Molecular Studies of Weed Beet Populations? Proceedings of the 3rd International Symposium on the Biosafety, Results of Field Tests of Genetically-Modified Plants and Microorganisms, University of California, Division of Agriculture and Natural Resources, Oakland, 75-83.
[152] Rose, C.W., Millwood, R.J., Moon, H.S., Rao, M.R., Halfhill, M.D., Raymer, P.L., Warwick, S.I., Al-Ahmad, H., Gressel, J. and Stewart Jr., C.N. (2009) Genetic Load and Transgenic Mitigating Genes in Transgenic Brassica rapa (Field Mustard) × Brassica napus (Oilseed Rape) Hybrid Populations. BMC Biotechnology, 9, 93. http://dx.doi.org/10.1186/1472-6750-9-93
[153] Palaudelmàs, M., Penas, G., Mele, E., Serra, J., Salvia, J., Pla, M., Nadal, A. and Messeguer, J. (2009) Effect of Volunteers on Maize Gene Flow. Transgenic Research, 18, 583-594.
http://dx.doi.org/10.1007/s11248-009-9250-7
[154] Carpenter, J.E. (2010) Peer-Reviewed Surveys Indicate Positive Impact of Commercialized GM Crops. Nature Biotechnology, 28, 319-321. http://dx.doi.org/10.1038/nbt0410-319
[155] Brookes, G., Yu, T.H., Tokgoz, S. and Elobeid, A. (2010) The Production and Price Impact of Biotech Corn, Canola, and Soybean Rops. AgBioForum, 13, 25-52.
[156] Storer, N.P., Dively, G.P. and Herman, R.A. (2008) Landscape Effects of Insect-Resistant Genetically Modified Crops. In: Romeis, J., Shelton, A.M. and Kennedy, G.G., Eds., Integration of Insect-Resistant Genetically Modified Crops within IPM Programs, Springer, New York, 273-302.
[157] Naranjo, S.E. (2005) Field Studies Assessing Arthropod Non-Target Effects of Bt Transgenic Crops: Introduction. Environmental Entomology, 34, 1178-1180.
[158] Naranjo, S.E. (2005) Long-Term Assessment of the Effects of Transgenic Bt Cotton on the Abundance of Non-Target Arthropod Natural Enemies. Environmental Entomology, 34, 1193-1210.
http://dx.doi.org/10.1603/0046-225X(2005)034%5B1193:LAOTEO%5D2.0.CO;2
[159] Naranjo, S.E. (2005) Long-Term Assessment of the Effects of Transgenic Bt Cotton on the Function of the Natural Enemy Community. Environmental Entomology, 34, 1211-1223.
http://dx.doi.org/10.1603/0046-225X(2005)034%5B1211:LAOTEO%5D2.0.CO;2
[160] Wolfenbarger, L.L., Naranjo, S.E., Lundgren, J.G., Bitzer, R.J. and Watrud, L.S. (2008) Bt Crop Effects on Functional Guilds of Non-Target Arthropods: A Meta-Analysis. PLoS ONE, 3, e2118.
http://dx.doi.org/10.1371/journal.pone.0002118
[161] Naranjo, S.E. (2009) Impacts of Bt Crops on Non-Target Invertebrates and Insecticide Use Patterns. CAB Reviews: Perspectives in Agriculture, Veterinary Science, Nutrition and Natural Resources, 4, 1-23. http://dx.doi.org/10.1079/PAVSNNR20094011
[162] Duan, J.J., Lundgren, J.G., Naranjo, S. and Marvier, M. (2009) Extrapolating Non-Target Risk of Bt Crops from Laboratory to Field. Biology Letters, 6, 74-77. http://dx.doi.org/10.1098/rsbl.2009.0612
[163] Brookes, G. and Barfoot, P. (2012) Global Economic and Environmental Benefits of GM Crops Continue to Rise. PG Economics 2012. http://www.pgeconomics.co.uk/page/33/global-impact-2012
[164] Bennet, R., Phipps, R., Strange, A. and Grey, P. (2004) Environmental and Human Health Impacts of Growing Genetically Modified Herbicide-Tolerant Sugar Beet: A Life-Cycle Assessment. Plant Biotechnology Journal, 2, 273-278.
http://dx.doi.org/10.1111/j.1467-7652.2004.00076.x
[165] National Research Council (2010) The Impact of Genetically Engineered Crops on Farm Sustainability in the United States. National Academies, Washington DC.
[166] Wang, S., Just, D.R. and Pinstrup-Andersen, P. (2008) Bt-Cotton and Secondary Pests. International Journal of Biotechnology, 10, 113-120. http://dx.doi.org/10.1504/IJBT.2008.018348
[167] Wang, Z.J., Lin, H., Huang, J., Hu, R., Rozelle, S. and Pray, C. (2009) Bt Cotton in China: Are Secondary Insect Infestations Offsetting the Benefits in Farmer Fields? Agricultural Sciences in China, 8, 83-90. http://dx.doi.org/10.1016/S1671-2927(09)60012-2
[168] Gassmann, A.J., Petzold-Maxwell, J.L., Keweshan, R. and Dunbar, M.W. (2011) Field-Evolved Resistance to Bt Maize by Western Corn Rootworm. PLoS ONE, 6, e22629. http://dx.doi.org/10.1371/journal.pone.0022629
[169] Fowler, C. (2011) Conserving Diversity: The Challenge of Cooperation. Acta Horticulturae, 916, 19-24.
[170] Ortiz, R., Mowbray, D., Dowswell, C. and Rajaram, S. (2007) Norman E. Borlaug: The Humanitarian Plant Scientist Who Changed the World. Plant Breeding Reviews, 28, 1-37. http://dx.doi.org/10.1002/9780470168028.ch1
[171] Ortiz, R., Braun, H.J., Crossa, J., Crouch, J.H., Davenport, G., Dixon, J., Dreisigacker, S., Duveiller, E., He, Z., Huerta, J., Joshi, A.K., Kishii, M., Kosina, P., Manes, Y., Mezzalama, M., Morgounov, A., Murakami, J., Nicol, J., Ortiz-Ferrara, G., Ortiz-Monasterio, J.I., Payne, T.S., Pena, R.J., Reynolds, M.P., Sayre, K.D., Sharma, R.C., Singh, R.P., Wang, J., Warburton, M., Wu, H. and Iwanaga, M. (2008) Wheat Genetic Resources Enhancement by the International Maize and Wheat Improvement Center (CIMMYT). Genetic Resources and Crop Evolution, 55, 1095-1140.
http://dx.doi.org/10.1007/s10722-008-9372-4
[172] Reynolds, M.P. and Borlaug, N.E. (2006) International Collaborative Wheat Improvement: Impacts and Future Prospects. Journal of Agricultural Science, 144, 3-17.
http://dx.doi.org/10.1017/S0021859606005867
[173] Lantican, M.A., Dubin, M.J. and Morris, M.L. (2005) Impacts of International Wheat Breeding Research in the Developing World, 1988-2002. Centro Internacional de Mejoramiento de Maíz y Trigo, México D.F.
[174] Alston, J.M., Marra, M.C., Pardey, P.G. and Wyatt, T.J. (2000) Research Returns Redux: A Meta-Analysis of the Returns to Agricultural R&D. Australian Journal of Agricultural and Resource Economics, 44, 185-215. http://dx.doi.org/10.1111/1467-8489.00107
[175] Evenson, R.E. and Gollin, D. (1997) Genetic Resources, International Organizations, and Improvement in Rice Varieties. Economic Development and Cultural Change, 45, 471-500. http://dx.doi.org/10.1086/452288
[176] Jackson, M.T. and Huggan, R.D. (1993) Sharing the Diversity of Rice to Feed the World. Diversity, 9, 22-25.
[177] Salhuana, W. and Pollak, L. (2006) Latin American Maize Project (LAMP) and Germplasm Enhancement of Maize (GEM) Project: Generating Useful Breeding Germplasm. Maydica, 51, 339-355.
[178] Taba, S., Díaz, J., Franco, J., Crossa, J. and Eberhart, S.A. (1999) A Core Subset of LAMP from the Latin American Maize Project. CD-Rom. Centro Internacional de Mejoramiento de Maíz y Trigo, México D.F.
[179] Balint-Kurti, P., Blanco, M., Milard, M., Duvick, S., Holland, J., Clements, M., Holley, R., Carson, M.L. and Goodman, M. (2006) Registration of 20 GEM Maize Breeding Germplasm Lines Adapted to the Southern USA. Crop Science, 46, 996-998. http://dx.doi.org/10.2135/cropsci2005.04-0013
[180] Goodman, M.M. (2005) Broadening the U.S. Maize Germplasm Base. Maydica, 50, 203-214.
[181] Ortiz, R., Taba, S., Chávez-Tovar, V.H., Mezzalama, M., Xu, Y., Yan, J. and Crouch, J.H. (2010) Conserving and Enhancing Maize Genetic Resources as Global Public Goods—A Perspective from CIMMYT. Crop Science, 50, 13-28. http://dx.doi.org/10.2135/cropsci2009.06.0297
[182] Delmer, D.P. (2005) Agriculture in the Developing World: Connecting Innovations in Plant Research to Downstream Applications. Proceedings of the National Academy of Sciences of the United States of America, 102, 15739-15746. http://dx.doi.org/10.1073/pnas.0505895102                                                eww150119lx

The Position of Mineral Nitrogen Fertilizer in Efficient Use of Nitrogen and Land: A Review

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52650#.VJzPMcCAM4

Author(s)

ABSTRACT

Our attitude towards mineral nitrogen (N) fertilizers is ambivalent. N fertilizers have on one hand increased our supply of food, feed and other bio-based raw materials tremendously and also improved the use efficiency of land and labor, but have on the other hand a negative impact on the quality of the environment and contributed to the depletion of fossil fuel reserves. This awareness has resulted in strong pleas to spend much more attention to the recycling of N containing downstream “wastes”. It is, however, naive to assume that even perfect recycling suffices to offer the same number of people the same diet without inputs of “new” N, as inevitable losses of N make compensations indispensable. “New” N can be derived from either biological N fixation (“legumes”) or from industrially fixed N (“fertilizer”). The existing literature provides no evidence that the use of N fertilizers is per se unsustainable, as these fertilizers can also be made from renewable forms of energy. Besides, soil health and human health appear sensitive for the dosage but not for the form of N. It is yet imperative to reduce the input of “new” N as much as possible, so as to minimize adverse environmental effects. Measures to this end are a more precise assessment of crop N requirements, a better timing and positioning of N inputs, and any measure supporting the acceptance of “wastes” by farmers. The present paper elaborates the above aspects.

Cite this paper

Schröder, J. (2014) The Position of Mineral Nitrogen Fertilizer in Efficient Use of Nitrogen and Land: A Review. Natural Resources, 5, 936-948. doi: 10.4236/nr.2014.515080.

References

[1] Erisman, J.W., Van Grinsven, H., Grizzetti, B., Bouraoui, F., Powlson, D., Sutton, M.A., Bleeker, A. and Reis, S. (2011) The European Nitrogen Problem in a Global Perspective. In: Sutton, M.A., et al., Eds., The European Nitrogen Assessment, Cambridge University Press, Cambridge, 9-31.
http://dx.doi.org/10.1017/CBO9780511976988.005
[2] Sutton, M.A., Howard, C.M., Erisman, J.W., Bealey, W.J., Billen, G., Bleeker, A., Bouwman, A.F., Grennfelt, P., Van Grinsven, H. and Grizzetti, B. (2011) The Challenge to Integrate Nitrogen Science and Policies: The European Nitrogen Assessment Approach. In: Sutton, M.A., et al., Eds., The European Nitrogen Assessment, Cambridge University Press, Cambridge, 82-96.
http://dx.doi.org/10.1017/CBO9780511976988.008
[3] Skowronska, M. and Filipek, T. (2013) Life Cycle Assessment of Fertilizers: A Review. International Agrophysics, 28, 101-110.
[4] Smil, V. (2011) Nitrogen Cycle and World Food Production. World Agriculture, 2, 9-13.
[5] Tilman, D., Cassman, K.G., Matson, P.A., Naylor, R. and Polasky, S. (2002) Agricultural Sustainability and Intensive Production Practices. Nature, 418, 671-677.
http://dx.doi.org/10.1038/nature01014
[6] Rockstrom, J., Steffen, W., Noone, K., Persson, A., Chapin, F.S., Lambin, E., Lenton, T.M., Scheffer, M., Folke, C., Schellnhuber, H., Nykvist, B., De Wit, C.A., Hughes, T., Van der Leeuw, S., Rodhe, H., Sorlin, S., Snyder, P.K., Costanza, R., Svedin, U., Falkenmark, M., Karlberg, L., Corell, R.W., Fabry, V.J., Hansen, J., Walker, B., Liverman, D., Richardson, K., Crutzen, P. and Foley, J. (2009) Planetary Boundaries: Exploring the Safe Operating Space for Humanity. Ecology and Society, 14, 32.
[7] FAO (2012) World Agriculture towards 2030/2050: The 2012 Revision. ESAE Working Paper No. 12-03.
http://www.fao.org/economic/esa/esag/en/
[8] Gerbens-Leenes, P.W. and Nonhebel, S. (2002) Consumption Patterns and Their Effects on Land Required for Food. Ecological Economics, 42, 185-199.
http://dx.doi.org/10.1016/S0921-8009(02)00049-6
[9] Oleson, J.E. and Bindi, M. (2002) Consequences of Climate Change for European Agricultural Productivity, Land Use and Policy. European Journal of Agronomy, 16, 239-262.
http://dx.doi.org/10.1016/S1161-0301(02)00004-7
[10] Brown, A.D. (2003) Feed of Feedback. Agriculture, Population Dynamics and the State of the Planet. International Books, Utrecht.
[11] Smil, V. (2001) Enriching the Earth: Fritz Haber, Carl Bosch, and the Transformation of World Food Production. The MIT Press, Cambridge.
[12] Beukeboom, J.A. (1996) Default Values for Nutrient Book Keeping. Informatie en Kennis Centrum Landbouw, Ede.
[13] Van Duivenbooden, N., De Wit, C.T. and Van Keulen, H. (1996) Nitrogen, Phosphorus and Potassium Relations in Five Major Cereals Reviewed. Fertilizer Research, 44, 37-49.
http://dx.doi.org/10.1007/BF00750691
[14] Davidson, E.A. (2009) The Contribution of Manure and Fertilizer Nitrogen to Atmospheric Nitrous Oxide since 1860. Nature Geoscience, 2, 659-662.
http://dx.doi.org/10.1038/ngeo608
[15] Oenema, O. and Tamminga, S. (2005) Nitrogen in Global Animal Production and Management Options for Improving Nitrogen Use Efficiency. Science in China. Series C: Life Sciences, 48, 871-887.
[16] Moran, K. (2011) Role of Micronutrients in Maximizing Yields and in Biofortification of Food Crops. Proceedings 702, International Fertilizer Society, Leek, 28 p.
[17] Schroder, J.J. (2005) Manure as a Suitable Component of Precise Nitrogen Nutrition. Proceedings 574, International Fertiliser Society, York, 32 p.
[18] Herridge, D.F., Peoples, M.B. and Boddey, R.M. (2008) Global Inputs of Biological Nitrogen Fixation in Agricultural Systems. Plant and Soil, 311, 1-18.
http://dx.doi.org/10.1007/s11104-008-9668-3
[19] Dawson, C.J. and Hilton, J. (2011) Fertiliser Availability in a Resource-Limited World: Production and Recycling of Nitrogen and Phosphorus. Food Policy, 36, 14-22.
http://dx.doi.org/10.1016/j.foodpol.2010.11.012
[20] Schroder, J.J., Ten Holte, L. and Janssen, B.H. (1997) Non-Overwintering Cover Crops: A Significant Source of N. Netherlands Journal of Agricultural Science, 45, 231-248.
[21] Schroder, J.J. and Sorensen, P. (2011) The Role of Mineral Fertilizers in Optimising the Use Efficiency of Manure and Land. Proceedings 701, International Fertiliser Society, Leek, 20 p.
[22] De Klein, C.A.M., Van Logtestijn, R.S.P., Van der Meer, H.G. and Geurink, J.H. (1996) Nitrogen Loss from Cattle Slurry Injected into Grassland Soil with and without a Nitrification Inhibitor. Plant and Soil, 183, 161-170.
http://dx.doi.org/10.1007/BF00011431
[23] Flessa, H. and Beese, F. (2000) Laboratory Estimates of Trace Gas Emissions Following Surface Application and Injection of Cattle Slurry. Journal of Environmental Quality, 29, 262-268.
http://dx.doi.org/10.2134/jeq2000.00472425002900010033x
[24] Huijsmans, J. and Schils, R.L.M. (2009) Ammonia and Nitrous Oxide Emissions Following Field Application of Manure: State of the Art Measurement in the Netherlands. Proceedings 655, International Fertiliser Society, Leek, 37 p.
[25] Webb, J., Sorensen, P., Velthof, G., Amon, B., Pinto, M., Rodhe, L., Salomon, E., Hutchings, N., Burczyk, P. and Reid, J. (2013) An Assessment of the Variation of Manure Nitrogen Efficiency throughout Europe and an Appraisal of Means to Increase Manure-N Efficiency. Advances in Agronomy, 119, 371-442.
http://dx.doi.org/10.1016/B978-0-12-407247-3.00007-X
[26] Schroder, J.J., Uenk, D. and Hilhorst, G.J. (2007) Long-Term Nitrogen Fertilizer Replacement Value of Cattle Manures Applied to Cut Grassland. Plant and Soil, 299, 83-99.
http://dx.doi.org/10.1007/s11104-007-9365-7
[27] Schroder, J.J., Aarts, H.F.M., Ten Berge, H.F.M., Van Keulen, H. and Neeteson, J.J. (2003) An Evaluation of WholeFarm Nitrogen Balances and Related Indices for Efficient Nitrogen Use. European Journal of Agronomy, 20, 33-44.
http://dx.doi.org/10.1016/S1161-0301(03)00070-4
[28] Wuana, A. and Okieimen, F.E. (2011) Heavy Metals in Contaminated Soils: A Review of Sources, Chemistry, Risks and Best Available Strategies for Remediation. ISRN Ecology, 2011, Article ID: 402647.
[29] Fealy, R. and Schroder, J.J. (2008) Assessment of Manure Transport Distances and Their Impact on Economic and Energy Cost. Proceedings 642, International Fertiliser Society, York, 28 p.
[30] Foged, H.L., Flotats, X., Blasi, A.B., Palatsi, J., Magri, A. and Schelde, K.M. (2011) Inventory of Manure Processing Activities in Europe. Technical Report No. I (ENV.B.1/ETU/2010/0007) to the European Commission, DirectorateGeneral Environment, 138 p.
[31] Hjorth, M., Christensen, K.V., Christensen, M.L. and Sommer, S.G. (2010) Solid Liquid Separation of Animal Slurry in Theory and Practice: A Review. Agronomy for Sustainable Development, 30, 153-180.
http://dx.doi.org/10.1051/agro/2009010
[32] De Vries, J.W., Groenestein, C.M. and De Boer, I.J.M. (2012) Environmental Consequences of Processing Manure to Produce Mineral Fertilizer and Bio-Energy. Journal of Environmental Management, 102, 173-183.
http://dx.doi.org/10.1016/j.jenvman.2012.02.032
[33] Dangour, A.D., Dodhia, S.K., Hayter, A., Allen, E., Lock, K. and Uauy, R. (2009) Nutritional Quality of Organic Foods: A Systematic Review. American Journal of Clinical Nutrition, 90, 680-685.
http://dx.doi.org/10.3945/ajcn.2009.28041
[34] EUFIC (2013) Organic Food and Farming: Scientific Facts and Consumer Perceptions. EUFIC Review 10/2013.
http://www.eufic.org/article/en/expid/Organic_food_and_farming_scientific_facts_and_consumer_
perceptions/
[35] Smith-Spangler, C., Brandeau, M.L., Olkin, I. and Bravata, D.M. (2013) Are Organic Foods Safer or Healthier? Annals of Internal Medicine, 158, 297-300.
http://dx.doi.org/10.7326/0003-4819-158-4-201302190-00019
[36] Addiscott, T.M., Whitmore, A.P. and Powlson, D.S. (1991) Farming, Fertilizers and the Environment. Oxford University Press, Oxford.
[37] Bosshard, C., Sorensen, P., Frossard, E., Dubois, D., Mader, P., Nanzer, S. and Oberson, A. (2009) Nitrogen Use Efficiency of Animal Manure and Mineral Fertiliser Applied to Long-Term Organic and Conventional Cropping Systems. Nutrient Cycling in Agroecosystems, 83, 271-287.
http://dx.doi.org/10.1007/s10705-008-9218-7
[38] Langmeier, M., Frossard, E., Kreuzer, M., Mader, P., Dubois, D. and Oberson, A. (2002) Nitrogen Fertilizer Value of Cattle Manure Applied on Soils Originating from Organic and Conventional Farming Systems. Agronomie, 22, 789800.
http://dx.doi.org/10.1051/agro:2002044
[39] Kotschi, J. (2013) A Soiled Reputation: Adverse Impacts of Mineral Fertilizers in Tropical Agriculture. Commissioned by World Wildlife Fund (Germany) to Heinrich Boll Stiftung, 58 p.
[40] Kahn, S.A., Mulvaney, R.L., Ellsworth, T.R. and Boast, C.W. (2007) The Myth of Nitrogen Fertilization for Soil Carbon Sequestration. Journal of Environmental Quality, 36, 1821-1832.
http://dx.doi.org/10.2134/jeq2007.0099
[41] Mulvaney, R.L., Khan, S.A. and Ellsworth, T.R. (2009) Synthetic Nitrogen Fertilizers Deplete Soil Nitrogen: A Global Dilemma for Sustainable Cereal Production. Journal of Environmental Quality, 38, 2295-2314.
http://dx.doi.org/10.2134/jeq2008.0527
[42] Reid, D.K. (2007) Comment on “The Myth of Nitrogen Fertilization for Soil Carbon Sequestration” by S.A. Kahn et al. in the Journal of Environmental Quality 36: 1821-1832. Journal of Environmental Quality, 37, 739-740.
http://dx.doi.org/10.2134/jeq2008.0001le
[43] Powlson, D.S., Jenkinson, D.S., Johnston, A.E., Pouton, P.R., Glendining, M.J. and Goulding, K.W. (2010) Comments on “Synthetic Nitrogen Fertilizers Deplete Soil Nitrogen: A Global Dilemma for Sustainable Cereal Production,” by R.L. Mulvaney, S.A. Khan, and T.R. Ellsworth in the Journal of Environmental Quality 2009 38: 2295-2314. Journal of Environmental Quality, 39, 749-752.
http://dx.doi.org/10.2134/jeq2010.0001le
[44] Russell, A.E., Cambardella, C.A., Laird, D.A., Jaynes, D.B. and Meek, D.W. (2009) Nitrogen Fertilizer Effects on Soil Carbon Balances in Midwestern U.S. Agricultural Systems. Ecological Applications, 19, 1102-1113.
http://dx.doi.org/10.1890/07-1919.1
[45] Sylvester-Bradley, R., Lord, E., Sparkes, D.L., Scott, R.K., Wiltshire, J.J.J. and Orson, J. (1999) An Analysis of the Potential of Precision Farming in Northern Europe. Soil Use and Management, 15, 1-8.
[46] Schroder, J.J., Neeteson, J.J., Oenema, O. and Struik, P.C. (2000) Does the Crop or the Soil Indicate How to Save Nitrogen in Maize Production? Field Crops Research, 62, 151-164.
http://dx.doi.org/10.1016/S0378-4290(00)00072-1
[47] Olfs, H.W. (2009) Improved Precision of Arable Nitrogen Applications; Requirements, Technologies and Implementation. Proceedings 662, International Fertiliser Society, York, 36 p.
[48] D’Haene, K.D., Salomez, J., De Neve, S., De Waele, J. and Hofman, G. (2014) Environmental Performance of Nitrogen Fertiliser Limits Imposed by the EU Nitrates Directive. Agriculture, Ecosystems and Environment, 192, 67-79.
http://dx.doi.org/10.1016/j.agee.2014.03.049
[49] Schroder, J.J., Neeteson, J.J., Withagen, J.C.M. and Noij, I.G.A.M. (1998) Effects of N Application on Agronomic and Environmental Parameters in Silage Maize Production on Sandy Soils. Field Crops Research, 58, 55-67.
http://dx.doi.org/10.1016/S0378-4290(98)00086-0                                                            eww141226lx

A Descriptive and Syntactic Analysis of Àhàn Pronouns

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52175#.VIeeT2fHRK0

ABSTRACT

This paper examines pronouns in Àhàn, a language spoken in the Southwest Nigeria, specifically in Òmùò-Èkìtì, Ekiti East Local Government Area. In this language, the tone born by a pronoun is conditioned by the environment where it occurs. In other words, a first person pronoun subject can be a high, mid or a low tone. We also observe that in this language, pronoun can change its morphological form when it occurs in a particular syntactic environment as against the other. We shall also show, in the paper that pronouns in Àhàn inflect for tense.

Cite this paper

Akanbi, T. (2014) A Descriptive and Syntactic Analysis of Àhàn Pronouns. Open Journal of Modern Linguistics, 4, 664-675. doi: 10.4236/ojml.2014.45057.

References

[1] Abiodun, M. A. (2007). ‘O’ ki i seoro aropo-oruko: Eri lati inu fonoloji. Paper presented at the Yoruba Studies Association of Nigeria (YSAN) Conference.
[2] Adesola, O. (2004). Coda Deletion in the Yoruba Phonology. In A. Akinbiyi, & O. Adesola (Eds.). Proceedings of the 4th World Congress of African Linguistics. Cologne: Ruediger Koeppt Ventag.
[3] Adesola, O. (2005). Pronouns and Operators—A Bar Dependencies and Relations in Yoruba. Unpublished Ph.D. Dissertation. New Jersey: Rutgers, the State University of New Jersey.
[4] Ajiboye, J. O. (2004). The Syntax of Yoruba Genitive Construction. Paper read at the 35th Annual Conference of African Linguistics, Harvard, Boston.
[5] Ajiboye, J. O., & S. Amoskaite (2005). Yoruba 3rd Person Pro-Form Are Pro-DPs. Proceeding of the 2005 conference of the Canadian Linguistics Society.
[6] Akanbi, T. A. (2010). Distribution and Interpretation of PRO in Yoruba. Unpublished M.Phil. Dissertation, Ibadan: University of Ibadan.
[7] Akanbi, T. A. (2014). A Descriptive Account of Ahan Verb Phrase. An Unpublished Ph.D. Thesis, Department of Linguistics and Nigerian Language, Ado-Ekiti: Ekiti State University,
[8] Atoyebi, J. D. (2011). On the Syntax of Reflexives in Yoruba: A Descriptive Perspective. Paper Read at the Workshop on Universals and Typology of Reflexives, Universiteit Utrecht, Utrecht, 24-28 August 2011.
[9] Awobuluyi, O. (1967). Vowel Harmony in Yoruba. Journal of West African Languages, 1, 1-10.
[10] Awobuluyi, O. (2001). Aropo-orukokukuru eni ketaeyoasoluwa. Yoruba: Journal of the Yoruba Studies Association, 2, 1-8.
[11] Awobuluyi, O. (2006). ‘O’ ki i searopo orukoninu ede Yoruba. Yoruba: Journal of the Yoruba Association, 3, 1-14.
[12] Bennet, P. R., & Sterk, J. P. (1977). South-Central Niger Congo: A Reclassification. Studies in African Linguistics, 8, 241-273.
[13] Capo, H. B. C. (1989). Defoid. In J. T. Bendor-Samuel, & R. L. Hartell (Eds.), The Niger-Congo Languages: A Classification and Description of Africa’s Largest Language Family (pp. 275-290). Lanham, MD: University Press of America.
[14] Carnie, A. (2001). Syntax. Oxford: Blackwell Publishers.
[15] Chomsky, N. (1981). Lectures on Government and Binding: The Pisa Lectures. Dordrecht: Foris.
[16] Cornish, F. (1986). Anaphora Relations in English and French: A Discourse Perspective. Beckenham: Croom Helm Ltd.
[17] Crozier, D. H., & Blench, R. M. (Eds.) (1992). An Index of Nigerian Languages. Dallas, TX: Summer Institute of Linguistics.
[18] Elugbe, B. (1989). Some Tentative Historical Inferences from Comparative Edoid Studies. Kiabara, 2, 82-101.
[19] Elugbe, B. (2012). Comparative Akekoid and West Benue-Congo. The International Congress Proto-Niger-Congo: Comparison and Reconstruction International Conference, Paris, 18-21 September 2012.
[20] Haegeman, L. (1991). Introduction to Government and Binding Theory. New York: Blackwell.
[21] Hein, B., & Miyashita, H. (2008). Intersection between Reflexives and Reciprocals: A Grammaticalization Perspective. In E. Konig, & V. Gast (Eds.), Reciprocals and Reflexives: Theoretical and Typological Exploration (pp. 169-224). New York: Mouton de Gruyter.
[22] Hornstein, N., Nunes, J., & Grohmann, K. K. (2004). Understanding Minimalism. Cambridge: Cambridge University Press.
[23] Ilori, J. F. (1999). Itupale sintaasi iweyinninu ede Yoruba. M.A. Project, Ile-Ife: Obafemi Awolowo University.
[24] Kim, J., & Sells, P. (2007). English Syntax: An Introduction. Centre for the Study of Language and Information.
[25] Koopman, H. (2004). The Syntax of Specifiers and Heads. London, New York: Routledge.
[26] Lawal, N. (1997). Logophoric Pronouns in Yoruba and the Movement to Infl versus Relativized Subject Hypothesis. The Long-Distance Reflexive Workshop, LSA Linguistics Institute, Cornell.
[27] Manfredi, V. (1987). Antilogophoricity as Domain Extension in Igbo and Yoruba. Niger-Congo Syntax and Semantics, 1, 97-117.
[28] Piernezi, J., & Verze, W. (2000). Lexical Categories. Cambridge: OUP.
[29] Riemsdijk, H. C., & Williams, E. (1986). Introduction to the Theory of Grammar. Cambridge, MA: The MIT Press.
[30] Sells, P. (1987). Aspects of Logophoricity. Linguistic Inquiry, 18, 445-481.
[31] Stahlke, H. (1974). Pronouns and Islands in Yoruba. Studies in African Linguistics, 5, 171-204.
[32] Van den Berg, M. C. (2007). A Grammar of Early Stranan. Concept Manuscript Acadmisch Proefschrift. Goborente Hilversum, Germany.
[33] Williamson, K. (1989). Benue-Congo Overview. In J. T. Bendor-Samuel, & R. L. Hartell (Eds.), The Niger-Congo Languages: A Classification and Description of Africa’s Largest Language Family (pp. 247-273). Lanham, MD: University Press of America.                                                                                               eww141210lx
[34] Zeller, J. (2011). The Syntax of African Languages: A Review Ms. KwaZulu-Natal: University of Kwa-Zulu-Natal.

Health Hazards of Electromagnetic Radiation

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50957#.VFBeCFfHRK0

Author(s)

Awn B. Rifai*, Majed A. Hakami

Affiliation(s)

Department of Information and Communication Technologies, Arab Open University, Jeddah, KSA.

ABSTRACT

Electrical energy enters into the operation of a myriad industrial, scientific, medical, community and house equipment and appliances. The accompanying electromagnetic fields (EMFs) are partially transformed into radiation that affects human health. This research investigates the potential health hazards of radiation emanating from electric power lines. The research is based on studies by research organizations and on practical field measurements. The study includes investigation of electromagnetic radiation from high-voltage electric lines in inhabited areas in an urban environment, and provides some measurements in test locations in a typical city. The results are benchmarked against recommended safety levels.

KEYWORDS

Keywords Electromagnetic, Radiation, Environment, Health

Cite this paper

Rifai, A. and Hakami, M. (2014) Health Hazards of Electromagnetic Radiation. Journal of Biosciences and Medicines, 2, 1-12. doi: 10.4236/jbm.2014.28001.

References

[1] Adey, W.R. (1981) Tissue Interactions with Non-Ionizing Electromagnetic Fields. Physiological Reviews, 61, 435-514.
[2] American Conference of Governmental Industrial Hygienists (2001) Documentation of the Threshold Limit Values and Biological Exposure Indices. 7th Edition, Publication No. 0100, Cincinnati.
[3] American National Standards Institute (ANSI) (1991) Safety Levels with Respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz. ANSI/IEEE C95.1-1991, Date of Publication 1992. http://ieeexplore.ieee.org/servlet/opac?punumber=2917
[4] American National Standards Institute. http://www.ansi.org
[5] Australian Radiation Protection and Nuclear Safety Agency. Electricity and Health. Fact Sheet 19. http://www.arpansa.gov.au/pubs/factsheets/019is_electricity.pdf
[6] Balzano, Q., Garay, O. and Steel, F.R. (1978) Energy Deposition in Simulated Human Operators of 800-MHz Portable Transmitters. IEEE Transactions on Vehicular Technology, 27, 174-181. http://dx.doi.org/10.1109/T-VT.1978.23746 .
[7] Dietrich, F.M. and Jacobs, W.L. (2001) Survey and Assessment of Electric and Magnetic Fields. Public Exposure in the Transportation Environment. US Department of Transportation, Federal Railroad Administration, Report No. PB99- 130908.
[8] Federal Communications Commission, Radio Fre-quency Safety, Web Report. http://www.fcc.gov/oet/rfsafety http://www.fcc.gov/encyclopedia/radio-frequency-safety
[9] IEEE Committee on Man and Radiation (COMAR), IEEE Engineering in Medicine and Biology Society (2000) Possible Hazards from Exposure to Power Frequency Electric and Magnetic Fields. 19, 131-137. http://ewh.ieee.org/soc/embs/comar/
[10] International Commission on Non-Ionizing Radiation Protection (ICNIRP) (1998) Latest Publications on Radio Frequency—EMF Guidelines, ICNIRP Guidelines for Limiting Exposure to Time-Varying Electric, Magnetic and Electromagnetic Fields. Health Physics, 74, 494-522.
[11] Kaune, W.T. (1993) Assessing Human Exposure to Power-Frequency Electric and Magnetic Fields. Environmental Health Perspectives, 101, 121-133. http://dx.doi.org/10.2307/3431668 ; http://dx.doi.org/10.1289/ehp.93101s473 http://dx.doi.org/10.1289/ehp.93101s4121
[12] Kaune, W.T. and Zaffanella, L. (1994) Assessing Historical Exposure of Children to Power Frequency Magnetic Fields. Journal of Exposure Analysis Environmental Epidemiology, 4, 149-170.
[13] Kovetz, A. (2000) Electromagnetic Theory. Clarendon Press.
[14] National Council on Radiation Pro-tection and Measurements (1984) Some Issues Important in Developing Basic Radi- tion Protection Recommendations. Proceedings of the 20th Annual Meeting, 4-5 April 1984. http://www.ncrp.com
[15] National Institute of Environmental Health Sciences (2002) Electric and Magnetic Fields Associated with the Use of Electric Power, Questions and Answers. NIEHS/DOE EMF RAPID Program. http://www.niehs.nih.gov/health/assets/docs_p_z/results_of_emf_research_emf_questions_answers_booklet.pdf
[16] NJ Dept Radiation Protection, Department of Environmental Protection. Radiation Protection and Release Prevention, 60 Hz Power Lines. http://www.state.nj.us/dep/rpp (Select Non-Ionizing Radiation) http://www.niehs.nih.gov/health/topics/agents/emf/ http://www.who.int/peh-emf/en/
[17] Office of Radiation, Radiation Studies Division (1992) EMF in Your Environment: Magnetic Field Measurements of Everyday Electrical Devices. US Environmental Protection Agency, Washington DC.
[18] Tarone, R.E., Kaune, W.T., Linet, M.S., Hatch, E.E., Kleinerman, R.A., Robison, L.L., Boice, J.D. and Wacholder, S. (1998) Residential Wire Codes: Reproducibility and Relation with Measured Magnetic Fields. US En-vironmental Pro- tection Agency. Occupational and Environmental Medicine, 55, 333-339. http://dx.doi.org/10.1136/oem.55.5.333
[19] US Department of Transportation, NTIS (1999) Public Exposure in the Transportation Environment. Report of the Document PB99-130908. National Technical Information Service, Arlington, VA.
[20] Vanderlinde, J., (2004) Engineering in Medicine and Biology Society (1993) Classical Electromagnetic Theory. 2nd Edition, Wiley, New York.
[21] World Health Organization, Standards and Guidelines. Electromagnetic Fields (EMF). http://www.who.int/peh-emf/standards/en/
[22] World Health Organization EMF Project (2011: Lyon, France) Non-Ionizing Radiation, Part II: Radiofrequency Elec- tromagnetic Fields/IARC Working Group on the Evaluation of Carcinogenic Risks to Humans, IARC Monographs on the Evaluation of Carcinogenic Risks to Humans. http://www.who.ch/peh-emf
[23] Department of Protection of the Human Environment, World Health Organization, Geneva, Switzerland (2002) Establishing a Dialogue on Risks from Electromagnetic Fields, Radiation and Environmental Health. http://www.who.int/peh-emf/publications/risk_hand/en/
[24] Zaffanella, L. (1993) Survey of Residential Magnetic Field Sources. Volume 1: Goals, Results and Conclusions. Electric Power Research Institute (EPRI), Palo Alto, CA, 1-224.                                                                       eww141029lx

Mathematical Modelling of Sterile Insect Technology for Mosquito Control

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50418#.VD3Op1fHRK0

ABSTRACT

Reduction of mosquito populations will, at least, reduce substantially the transmission of malaria disease. One potential method of achieving this reduction is the environmentally-friendly population control method known as the Sterile Insect Control (SIT) method. The SIT method has so far not been widely used against insect disease vectors, such as mosquitoes, because of various practical difficulties in rearing, sterilization and distribution of the parasite population. For mosquitoes, male-only release is considered essential since sterile females will bite and so may transmit disease, whereas male mosquitoes do not bite. This work concerns the mathematical modelling of the effectiveness of Sterile Insect Technique for Aedes aegypti mosquitoes, when the female sexual preference is incorporated. We found that for a released value of the sterile male mosquito below 40,000, the wild mosquito population decreases over time while the sterile male mosquito population increases. Therefore, the transmission of malaria and dengue infection declines because the sterile male mosquitoes dominated the environment. We also found that for a released value of the sterile male mosquito above 40,000, the wild mosquito population decreases and the sterile male mosquito population decreases as well. Therefore, if the injection of sterile male mosquitoes is large enough, the environment will be rid of mosquitoes over time. The result also shows that if sexual selection is incorporated into a reaction diffusion system, modelling the spread of Aedes aegypti mosquitoes, the Sterile Insect Technique (SIT) will still be a successful control measure.

Cite this paper

Patinvoh, R. and Susu, A. (2014) Mathematical Modelling of Sterile Insect Technology for Mosquito Control. Advances in Entomology, 2, 180-193. doi: 10.4236/ae.2014.24027.

References

[1] Roll Back Malaria (2001) Country Strategies and Resource Requirements. WHO/CDS/RBM/2001.34
[2] Ribeiro, J.M.C. (1987) Role of Saliva in Blood-Feeding by Arthropods. Annual Review of Entomology, 32, 463-478. http://dx.doi.org/10.1146/annurev.en.32.010187.002335
[3] Cator, L.J, Arthur, B.J., Harrington, L.C. and Hoy, R.R. (2009) Harmonic Convergence in the Love Songs of the Dengue Vector. Mosquito. Science, 323, 1077-1079.
[4] Crow, J.F. (1986) Basic Concepts in Population, Quantitative, and Evolutionary Genetics. W.H. Freeman, New York, 273.
[5] Lee, N., Elias, D.O. and Mason, A.C. (2009) A Precedence Effect Resolves Phantom Sound Source Illusions in the Parasitoid Fly Ormia ochracea. Proceedings of the National Academy of Sciences of the United States of America, 106, 6357-6362. http://dx.doi.org/10.1073/pnas.0809886106
[6] Cator, L.J., NgHabi, K.R., Hoy, R.R. and Harrington, L.C. (2010) Sizing up a Mate: Variation in Production and Response to Acoustic Signals in Anopheles gambiae. Behavioral Ecology, 21, 1033-1039.
http://dx.doi.org/10.1093/beheco/arq087
[7] Belton, P, (1994) Attraction of Male Mosquitoes to Sound. Journal of the American Mosquito Control Association, 10, 297-301.
[8] Clements, A.N. (1999) The Biology of Mosquitoes. Sensory Reception and Behavior. CABI Publishing Inc., New York.
[9] Yuval, B. and Bouskila, A. (1993) Temporal Dynamics of Mating and Predation in Mosquito Swarms. Oecologia, 85, 65-69.
[10] Yuval, B., Wekesa, J.W. and Washino, R.K. (1993) Effects of Body Size on Swarming Behavior and Mating Success of Male Anopheles Freeborni (Diptera: Culicidae). Journal of Insect Behavior, 6, 333-342.
http://dx.doi.org/10.1007/BF01048114
[11] Engelstädter, J. (2010) The Effective Size of Populations Infected with Cytoplasmic Sex-Ratio Distorters. Genetics, 186, 309-320. http://dx.doi.org/10.1534/genetics.110.120014
[12] Anguelov, R., Dumont, Y. and Lubuma, J. (2012) Mathematical Modelling of Sterile Insect Technology for Control of Anopheles Mosquito. Computers and Mathematics with Applications, 64, 374-389.
http://dx.doi.org/10.1016/j.camwa.2012.02.068
[13] Parshad, R.D. and Agusto, F.B. (2011) Global Dynamics of a PDE Model for Aedes aegypti Mosquitoe Incorporating Female Sexual Preference. Dynamics of Partial Differential Equations, 8, 311-343.
[14] Thomé, R.C.A, Yang, H.M. and Esteva, L. (2010) Optimal Control of Aedes aegypti Mosquitoes by the Sterile Insect Technique and Insecticide. Mathematical Biosciences, 223, 12-23.
http://dx.doi.org/10.1016/j.mbs.2009.08.009
[15] Bartlett, A.C. (1990) Insect, Sterility, Insect Genetics, and Insect Control. In: Pimentel, D., Ed., Handbook of Pest Management in Agriculture, CRC Press, Boca Raton, 279-287.
[16] Esteva, L. and Yang, H.M. (2005) Mathematical Model to Assess the Control of Aedes aegypti Mosquitoes by the Sterile Insect Technique. Mathematical Biosciences, 198, 132-147.
http://dx.doi.org/10.1016/j.mbs.2005.06.004
[17] Gubler, D.J. (1986) Dengue, the Arboviruses, Epidemiology and Ecology. Vol. 11, Monath, T.P., Ed., p. 213.
[18] Rafikov, M., Bevilacqua, L. and Wyse, A.P.P. (2009) Optimal Control Strategy of Malaria Vector Using Genetically Modified Mosquitoes. Journal of Theoretical Biology, 258, 418-429.
http://dx.doi.org/10.1016/j.jtbi.2008.08.006
[19] Takahashi, L.T., Maidana, N.A., Ferreira Jr., W.C., Pulino, P. and Yang, H.M. (2005) Mathematical Models for the Aedes aegypti Dispersal Dynamics: Travelling Waves by Wing and Wind. Bulletin of mathematical Biology, 67, 509-528. http://dx.doi.org/10.1016/j.bulm.2004.08.005
[20] Jacob-Lorena, M. Genetic Approaches for Malaria Control. Johns Hopkins School of Public Health, Malaria Research Institute, Dept. Molecular Microbiology and Immunology, Baltimore.                                                             eww141015lx