Temporal and Spatial Variations of Accommodation and Sediment Accumulation during Transgressive to Highstand Stages as Reconstructed from a Latest Pleistocene to Holocene Sequence in the Intra-Arc Osaka Basin, Japan

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53516#.VMcukSzQrzE

ABSTRACT

Temporal and spatial variations in accommodation (i.e., paleo-water depth) and sediment accumulation (amount of deposition) in the intra-arc Osaka Basin, Japan, were reconstructed from the post-glacial transgression through the sea-level highstand, a total of 9000 years. At the beginning of the marine transgressive stage (about 11,000 cal y BP), paleo-water depths were shallow and the sediment accumulation was large. The area occupied by Osaka Bay gradually extended and sediment deposition decreased from 11,000 to 6000 cal y BP. During the period of maximum transgression (6000 – 5000 cal y BP), an inner bay, Kawachi Bay with a water depth of 5 – 10 m, was expanded in the inland eastern Osaka area, and paleo-water depths reached a maximum and depositional rates reached a minimum. During the subsequent highstand and small regression (about 5000 cal y BP to the present), however, deposition increased rapidly as a result of river delta and shoreline progradations. Regional differences were observed in accommodation and accumulation between the outer bay area and the inner bay area. During both the transgressive and regressive stages, deposition decreased in the inner bay area. In contrast, in the outer bay area and in the basin overall, deposition was high during the first part of the transgressive stage but it decreased during the maximum transgression, before reaching a maximum during the subsequent highstand and regression. During the regressive stage, fluvial delta progradation led to the formation of a thick sequence of delta body sediments. Sediment accumulation was 30% – 40% higher during the regressive stage than that during the transgressive stage.

Cite this paper

Masuda, F. and Itomoto, N. (2015) Temporal and Spatial Variations of Accommodation and Sediment Accumulation during Transgressive to Highstand Stages as Reconstructed from a Latest Pleistocene to Holocene Sequence in the Intra-Arc Osaka Basin, Japan. Open Journal of Geology, 5, 28-37. doi: 10.4236/ojg.2015.51003.

References

[1] Van Wagoner, J.C., Posamentier, H.W., Mitchem, R.M., Vail, P.R., Sarg, J.F., Louit, T.S. and Hardengol, J. (1988) An Overview of the Fundamental of Sequence Stratigraphy and Key Definition: Sea Level Change- and Integrated Approach. SEPM Special Publication, 42, 39-45.
[2] Vail, P.R., Audemard, F., Boeman, S.A., Eisner, P.N. and Perez-Cruz, C. (1991) The Stratigraphic Signatures of Tectonics, Eustasy and Sedimentology—An Overview. In: Einsele, G., Ricken, W. and Seilacher, A., Eds., Cycles and Events in Stratigraphy, 6, Springer-Verlag, Berlin, 617-659.
[3] Masuda, F. and Ito, M. (1999) Contributions to Sequence Stratigraphy from the Quaternary Studies in Japan. The Quaternary Research, 38, 184-193. http://dx.doi.org/10.4116/jaqua.38.184
[4] Masuda, F. (1998) Dynamic Stratigraphy Based on Highly Dense Data of 14C Ages in the Holocene. Journal of Geography, 107, 713-727. (In Japanese with English Abstract or Summary)
http://dx.doi.org/10.5026/jgeography.107.5_713
[5] Masuda, F. (2007) Formation of Depositional Sequences and Landforms Controlled by Relative Sea-Level Change: The Result of the Holocene to Upper Pleistocene Study in Japan. Transactions, Japanese Geomorphological Union, 28, 365-379. (In Japanese with English Abstract or Summary)
[6] Masuda, F. and Saito, Y. (1999) Temporal Variations in Depositional Rates within a Holocene Sequence in Japan. Proceeding of International Symposium of Prof. K.O. Emery Commemorative Workshop on Land-Sea Link in Asia, 85, 421-426.
[7] Naruse, Y. (1982) The Quaternary. Iwanami-Shoten, Tokyo, 269 p. (In Japanese)
[8] Iseki, K. (1983) Alluvial Plain. UP Earth Science, Tokyo University Press, Tokyo, 145 p. (In Japanese)
[9] Umitsu, M. (1994) Late Quaternary Environment and Landform Evolution of Riverine Coastal Lowlands. Kokonsyoin, Tokyo, 270 p. (In Japanese)
[10] Masuda, F., Miyahara, B., Hirotsu, J., Irizuki, T., Iwabuchi, Y. and Yoshikawa, S. (2000) Temporal Variation of Holocene Osaka Bay Conditions Estimated from a Core in Off-Kobe. Journal of Geological Society of Japan, 106, 482-488. (In Japanese with English Abstract or Summary)
http://dx.doi.org/10.5575/geosoc.106.482
[11] Nanayama, F., Doi, Y., Kitada, N. and Takemura, K. (2001) Stratigraphic, Sequence Stratigraphic and Sedimentary Environment Analyses on the Late Pleistocene Holocene Sediments of the Eastern Side of Osaka Bay, Central Japan since 130 Ka. Journal of Geological Society of Japan, 107, 179-197. (In Japanese) http://dx.doi.org/10.5575/geosoc.107.179
[12] Masuda, F., Irizuki, T., Fujiwara, O., Miyahara, B. and Yoshikawa, S. (2002) A Holocene Sea-Level Curve Constructed from a Single Core at Osaka, Japan (A Preliminary Note). Memoirs of Faculty of Science, Kyoto University, Series of Geology & Mineralogy, 59, 1-8.
[13] Sugiyama, Y., Nanayama, F., Miura, K., Yoshikawa, T., Yokota, H., Suehiro, M., Furutani, M., Tochimoto, Y., Hirose, K., Yokoyama, Y., Kitada, N. and Takemura, K. (2003) Complementary Study of the Uemachi Fault System in the Osaka BASIN (2): Evaluation of the Fault Activity Based on Supplementary Boring and Re-Interpretation of S-Wave Seismic Reflection Data. Annual Report on Active Fault and Paleoearthquake Researches, No. 11, 117-143. (In Japanese)
[14] Yoshikawa, S., Mitamura, M., Tanaka, Y. and Tsukada, Y. (2005) Sedimentary Facies and Radiocarbon Dates of the Yumeshima-Oki Core from Osaka Bay, Central Japan. Proceeding of the 15th Symposium on Geo-Environments and Geo-Technics, Yokohama, 10-11 December 2005, 173-178. (In Japanese)
[15] Mitamura, M., Tsukada, Y., Oshima, A., Sanbe, Y., Kitada, N. and Yoshikawa, S. (2009) Depositional Environment and Physical Property of the Chuseki-So in the Osaka Plain. Proceedings of Symposium on Ground and Environmental Features, Osaka, March 2009, 27-32. (In Japanese)
[16] Masuda, F. (2013) Depositional Environments of the Holocene Marine Clay Bed, Ma13 Bed Intercalated in the So-Called “Chuseki-So” of the Osaka Plain Analyzed by the Depositional Curves. The Science and Engineering Review of Doshisha University, 54, 59-65.
[17] Research and Development Bureau of Ministry of Education, Culture, Sports, Science and Technology and Disaster Prevention Research Institute Kyoto University (2013) Report of Survey and Observation for Uemachi Fault Belt, 449 p. (In Japanese)
[18] Tsujimoto, A., Kitamura, S. and Yoshikawa, S. (2009) Variation of Depositional Environments of the Subsurface Chuseki-So in the Osaka Plain Analyzed by Micro Fossils. Proceedings of Symposium on Ground and Environmental Features, Osaka, March 2009, 27-32. (In Japanese)
[19] Machida, H. and Arai, F. (1992) Atlas of Tephra in and around Japan. Tokyo University Press, Tokyo, 336 p. (In Japanese)
[20] Chou, T. (2001) Origin of the Morishoji Site. In: Archaeological Reports of the Morishoji Site in Osaka, Japan, Osaka City Cultural Properties Association, Osaka, 49-51. (In Japanese)
[21] Mitamura, M., Matsuyama, N., Nakagawa, K., Yamamoto, K. and Suwa, S. (1994) Stratigraphy and Subsurface Structure of Holocene Deposits around Uemachi Upland in the Central Osaka Plain. Journal of Geosciences, Osaka City University, 37, 183-212.
[22] Kansai Geo-Informatics Research Committee (2007) Kansai Jiban-Osaka Plain and Osaka Bay. Kansai Geoinformatics Council, Kansai, 345 p. (In Japanese)
[23] Masuda, F., Sato, T., Ito, Y. and Sakurai, M. (2013) Preliminary Note on a New Shazam Stratigraphy Applied to a Borehole Database Analysis of Subsurface Geology in the Osaka Plain. Journal of Geography, 122, 892-904. (In Japanese with English Abstract or Summary)
[24] Mitamura, M. and Hashimoto, M. (2004) Spatial Distribution with the Drilling Database on the Basal Gravel Bed of the Namba Formation in the Osaka Plain, Southwest Japan. The Quaternary Research, 45, 253-264. (In Japanese with English Abstract or Summary) http://dx.doi.org/10.4116/jaqua.43.253
[25] Masuda, F. (2002) Variation of Oceanic Condition for Osaka Bay Estimated from Borehole Cores. Proceeding of Symposium by Kansai Branch of Japan Society of Engineering Geology, Osaka, July 2002, 117-127. (In Japanese)
[26] Masuda, F. and Miyahara, B. (2000) Depositional Facies and Processes of the Holocene Marine Clay in the Osaka Bay Area, Japan. The Quaternary Research, 39, 349-355. (In Japanese with English Abstract or Summary) http://dx.doi.org/10.4116/jaqua.39.349
[27] Masuda, F., Nakagawa, Y., Sakamoto, T., Ito, Y., Sakurai, M. and Mitamura, M. (2013) Tenma Spit Deposit in the Holocene of the Osaka Plain: Distribution and Stratigraphy. Journal of the Sedimentological Society of Japan, 72, 115-123. (In Japanese with English Abstract or Summary)
http://dx.doi.org/10.4096/jssj.72.115
[28] Fujiwara, O., Kamataki, T. and Masuda, F. (2004) Sedimentological Time-Averaging and 14C Dating of Marine Shells. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 223-224, 540-544.
[29] Jervey, M.T. (1988) Quantitative Geological Modeling of Siliciclastic Rock Sequences and Their Seismic Expression. SEPM Special Publication, 42, 47-69.
[30] Kajiyama, H. and Itihara, M. (1972) The Developmental History of the Osaka Plain with References to the Radio-Carbon Dates. Memoirs of Geological Society of Japan, 7, 101-112. (In Japanese)
[31] Sakurai, M. and Masuda, F. (2013) Construction of Subsurface Geological Structures Using a Drilling Database: A Case Study for an Intra-Arc Basin, the Osaka Plain, Southwest Japan. Open Journal of Geology, 3, 39-43. http://dx.doi.org/10.4236/ojg.2013.32006
[32] Sakurai, M. and Masuda, F. (2014) Reconstruction of Relative Tectonic Movements Using Transgressive Ravinement Erosion Surfaces: A Case Study for the Shallow Subsurface Geology of the Osaka Plain, Japan. Journal of Earth Sciences and Geotechnical Engineering, 4, 17-24.                          eww150127lx
Advertisements

Uncommon and Impact-Suspicious Geologic Phenomena across Jordan and Adjacent Areas, Arabian Plate

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52905#.VKyUiMnQrzE

ABSTRACT

For the discovery and analysis of Jebel Waqf as Suwwan (JWS) Impact Crater, Jordan pushed the authors to consequently focusing on other unusual geologic phenomena such as circular/oval structures (some of “crypto-volcanic” origin), disharmonic folding, horizontal stylolites, and a broad stripe of Sanidine-Hornfels-Facies, all of them hosted in Upper Cretaceous/Paleogene carbonate rocks exposed across Jordan and adjacent areas. Shatter cones are the most useful tools during field work in the realm of circular structures. In addition to the impact-geologic data of JWS Impact Structure hitherto available, the cooling process of melted Lower Cretaceous Kurnub-Sandstone could be verified by microscopically identified SiO2-modifications between the melting point (1714°C) and low temperatures. In comparison with the Suffield 500 tons explosion tests [20] and with the Ries Impact Crater, Germany, excavation and vaporization processes of target rocks demand drilling between Central Uplift and Inner Ring of the JWS Impact Structure (“Chert-Carbonate-Impact-Chess Game”). In a scenario: “Impacting meets Plate Tectonics”, phenomena like disharmonic folding, horizontal stylolites, and an abundance of circular/oval structures of high diameter variation through northwest Jordan are discussed under aspects of gravitational gliding, effects of seismic surface waves (Love-), transpressional structures related to Jordan Rift-Tectonics, and possible impact processes of unknown number occurred on the Arabian Plate in southeastern direction with northwest-directed impulse. The so-called “Mottled Zone” of Jordan and Palestine owning a high number (~100) of mineral neoformations with formation temperatures up to ~1120°C(pseudo-wollastonite = β-CaSiO3), is to be interpreted as of “Sanidine-Hornfels-Impact Facies” under ricochet conditions along an “Avenue of Ricochet-Impact-Thermo-Cataclysm”. Marble-related travertines represent a low temperature facies of the impact event. The temporal projection of patterns like Rapid Climate Change (RCC), astrophysical data [Hoyle’s Comet: 47], acid events in ice-cores, tektite fall, Rise and Fall of Neolithic/Bronze Age Cultures, reveals an amazing “Ensemble” of coincidences among all of these parameters since the Middle/Upper Pleistocene boundary throughout Holocene. Ten short Interval Cases are discussed as being “Rare Event”- suspicious. Myths like the “Gilgamesch Epos” and “John’s Apocalypse” surprisingly provide realistic hints on impact events comparable with modern observations and experiments, which are: approach of extraterrestrial bodies, impact cratering, earthquakes and faulting, supercyclonic whirl-storms (wildfires), effects of hot ejecta, destruction of fauna, flora, and cities, long-lasting flooding, darkness caused by ashes and dust circulating in atmosphere and stratosphere (sintwinter), and environmental pollution. Such hints were handed down in myths of ~180 ethnic peoples around the globe. “High probability Cases” focus on impact events on ~9600 yr B.P and on ~6000 yr B.P. Other “Rare Events” may have possibly occurred about ~8000 yr B.P. and on ~3200 yr. B.P. (all radiocarbon yr.cal.). Core-drilling in the pull-apart basins of the Jordan Rift System (Dead Sea, Lake Tiberias) as traps having possibly preserved volcanic and impact ejecta would be a challenging international and interdisciplinary project.

Cite this paper

Schneider, W. and Salameh, E. (2014) Uncommon and Impact-Suspicious Geologic Phenomena across Jordan and Adjacent Areas, Arabian Plate. Open Journal of Geology, 4, 680-717. doi: 10.4236/ojg.2014.412051.

References

[1] Salameh, E., Khoury, H. and Schneider, W. (2006) Jebel Waqf as Suwwan, Jordan: A Possible Impact Crater—A First Approach. Zeitschrift der Deutsche Gesellschaft für Geowissenschaften, 157, 319-325. http://dx.doi.org/10.1127/1860-1804/2006/0157-0319
[2] Salameh, E., Khoury, H., Reimold, W.U. and Schneider, W. (2008) The First Large Meteorite Impact Structure Discovered in the Middle East: Jebel Waqf as Suwwan, Jordan. Meteoritics & Planetary Science, 43, 1681-1690.
[3] Salameh, E., Khoury, H., Reimold, W.U., Schneider, W. and Kenkmann, T. (2008) First Large Meteorite Impact Structure Discovered in the Middle East: Jebel Waqf as Suwwan, Jordan. The 4th Conference on Large Meteorite Impacts and Planetary Evolution, Parys, 17-21 August 2008, LPI Contribution No. 1423, Paper ID: 3106.
[4] Kenkmann, T., Khirfan, M., Reimold, W.U., Salameh, E., Konsul, K. and Khoury, H. (2009) The Structure of the Jebel Waqf as Suwwan Impact Crater, Jordan, as Revealed from Field Analysis, Remote Sensing Mapping, and Interpretation of Geophysical Data. The 1st Arab Impact Cratering and Astrogeology Conference, Amman, 9-11 November 2009, 32-37.
[5] Gretener, P.E. (1978) Reflexions on the “Rare Event” and Related Concepts in Geology. University of Calgary, Calgary, 17 p.
[6] Sagan, C. (1977) An Analyses of a World in Collision. In: Goldsmith, D.W., Ed., Scientists Confront Velikovsky, Cornell University Press, Ithaca, 45.
[7] Heimbach, W. (1970) Zur Geologie Nordost-Jordaniens. Geologisches Jahrbuch, 88, 265-288.
[8] Heimbach, W. (1971) Die Strukturen von Zakimat al Hasa, Ostjordanien, ihre Stellung im Regionalen Strukturplan and zum Vorkommen von Barytrosen. Geologisches Jahrbuch, 89, 329-338.
[9] Mitchel, R. (1958) The Al Umchaimin Crater, Western Iraq. Geographical Journal, 124, 578-580.
[10] Yaghan, R. and Mikbel, S. (1985) Geologic and Structural Interpretation of Landsat-Images in North Jordan, Proceedings of 2nd Jordanian Conference, Amman, 22-24 April 1985, 466-495.
[11] Ruef, M. (1967) Zur Stratigraphie und Tektonik der Kreide Jordaniens, mit einem Beitrag zur Genese gefalteter Kieselgesteine. Dissertation, Universitat Heidelberg, Heidelberg, 140 p.
[12] Salameh E. and Zacher W. (1982) Horizontal Stylolites and Paleostress in Jordan. Neues Jahrbuch für Geologie und Pal?ontologie, 8, 509-512.
[13] Mikbel, S. and Zacher, W. (1986) Fold Structures in Northern Jordan. Neues Jahrbuch für Geologie und Pal?ontologie, 4, 248-256.
[14] Heimbach, W. and Roesch, H. (1980) Die “Mottled Zone” in Zentraljordanien. Geologisches Jahrbuch, 40, 3-17.
[15] Gross, S. (1970) Mineralogy of the “Mottled Zone” Complex in Israel. List of Minerals. Israel Journal of Earth Science, 19, 211-216.
[16] Bender, F. (1975) Geology of the Arabian Peninsula, Jordan. Geological Survey Professional Paper 560-I. United States Government Printing Office, Washington DC, 11-136.
[17] Reimold, W.U. (2007) Revolutions in the Earth Sciences: Continental Drift, Impact, and Other Catastrophes. South African Journal of Geology, 110, 1-46. http://dx.doi.org/10.2113/gssajg.110.1.1
[18] Master, S. (2009) Wadi El Murbah, A Possible 7.5 Kilometer-Diameter Buried Impact Structure on the Jordan/Iraq Border: Geological Setting and Remote Sensing. The 1st Arab Impact Cratering and Astrogeology Conference, Amman, 9-11 November 2009, Abstract Volume, 58-60.
[19] Frisch, W. and Meschede, M. (2009) Plattentektonik, 3. Auflage. Primus-Verlag, Darmstadt, 196 p.
[20] Price, N.J. (2001) Major Impacts and Plate Tectonics. Routledge, London, 354 p.
[21] Steinitz, G. (1981) Enigmatic Chert Structures in the Senonian Cherts of Israel. First Geological Survey Bulletin, 75, 1-46.
[22] Wiesemann, G. (1969) Zur Tektonik des Gebietes ostlich des Grabenabschnitts Totes Meer-Jordantal. Beihefte Geologisches Jahrbuch, 81, 215-247.
[23] Sander, B. (1948) Einführung in die Gefügekunde der Geologischen K?rper. Springer-Verlag, Wien, 215 p.
[24] Hiller, W. and Schneider, G. (1967) Geophysik. In: Brinkmann, R., Ed., Lehrbuch der Allgemeinen Geologie, Band 3, Enke, Stuttgart, 396-547.
[25] David, E. (1969) Das Ries-Ereignis als physikalischer Vorgang. Geologica Bavarica, 61, 350-378.
[26] Anvimelech, M. (1964) Remarks of the Occurrence of Unusual High-Temperature Minerals in the So-Called “Mottled Zone” Complex of Israel. Israel Journal of Earth Science, 13, 102-110.
[27] Bentor, Y.K., Gross, S. and Heller, L. (1963) High-Temperature Minerals in Non-Metamorphosed Sediments in Israel. Nature, 199, 478-479. http://dx.doi.org/10.1038/199478a0
[28] Kolodny, Y. and Gross, S. (1974) Thermal Metamorphism by Combustion of Organic Matter: Isotopic and Petrological Evidence. The Journal of Geology, 82, 489-506. http://dx.doi.org/10.1086/627995
[29] Kolodny, Y., Bar, M. and Sass, E. (1971) Fission Track Age of the “Mottled Zone” Event in Israel. Earth and Planetary Science Letters, 11, 269-272. http://dx.doi.org/10.1016/0012-821X(71)90178-6
[30] Winkler, H.G.F. (1965) Die Genese der Metamorphen Gesteine. Springer, Heidelberg, 218 p. http://dx.doi.org/10.1007/978-3-662-29030-9
[31] Schultz, P.H. and Gault, D.E. (1990) Prolonged Global Catastrophes from Oblique Impacts. Geological Society America Special Papers, 247, 239-262.
[32] Gilmour, I., Wolbach, W.S. and Anders, E. (1990) Major Wildfires at the Cretaceous/Tertiary Boundary. In: Clube, S.V.M., Ed., Catastrophes and Evolution: Astronomical Foundations, Cambridge University Press, Cambridge, 195-212.
[33] Melosh, H.J., Schneider, N.M., Zahnle, K.J. and Latham, D. (1990) Ignition of Global Wildfires at the Cretaceous/ Tertiary Boundary. Nature, 343, 251-254. http://dx.doi.org/10.1038/343251a0
[34] Napier, W.M. (1990) Terrestrial Catastrophism and Galactic Cycles. In: Clube, S.V.M., Ed., Catastrophes and Evolution: Astronomical Foundations, Cambridge University Press, Cambridge, 133-167.
[35] Rampino, M.R. and Stothers, R.B. (1984) Geological Rhythms and Cometary Impacts. Science, 226, 1427-1431. http://dx.doi.org/10.1126/science.226.4681.1427
[36] Thorson, R.M., Clayton, W.S. and Seeber, L. (1986) Geologic Evidence for a Large Prehistoric Earthquake in Eastern Connecticut. Geology, 14, 463-467.
http://dx.doi.org/10.1130/0091-7613(1986)14<463:GEFALP>2.0.CO;2
[37] Hollemann, A. F., and Wiberg, E. (1964) Lehrbuch der Anorganischen Chmie. Walter de Gruyter & Co., Berlin, 766 p.
[38] Khoury, H., Salameh, E. and Clark, I. (2014) Mineralogy and Origin of Surficial Uranium Deposits Hosted in Travertine and Calcrete from Central Jordan. Applied Geochemistry, 43, 49-65.
http://dx.doi.org/10.1016/j.apgeochem.2014.02.005
[39] Gentner, W. and Wagner, G.A. (1969) Altersbestimmungen an Riesgl?sern und Moldaviten. Geologica Bavarica, 61, 296-303.
[40] Troger, W.E. (1969) Optische Bestimmung der Gesteinsbildenden Minerale Teil 2: Textband. Schweizerbart, Stuttgart, 822 p.
[41] Stoffler, D. (1971) Coesite and Stishovite in Shocked Crystalline Rocks. Journal of Geophysical Research, 76, 5474-5488. http://dx.doi.org/10.1029/JB076i023p05474
[42] Von Engelhardt, W., Staffler, D. and Schneider, W. (1969) Petrologische Untersuchungen im Ries. Geological Bavarica, 61, 229-295.
[43] Von Engelhardt, W. (1990) Distribution, Petrography and Shock Metamorphism of the Ejecta of the Ries Crater in Germany—A Review. Tectonophysics, 171, 259-273.
http://dx.doi.org/10.1016/0040-1951(90)90104-G
[44] Salameh, E., Khoury, H. and Reimold, W.U. (2014) Drilling the Waqf as Suwwan Impact Structure. International Journal of Earth Sciences (Geologische Rundschau), 103, 253-264.
[45] Heimbach, W. (1969) Vulkanogene Erscheinungen in der Kalktafel Zentraljodaniens. Beihefte Geologisches Jahrbuch, 81, 149-160.
[46] Palmqvist, L. (2004) Der Grosse übergang, 10000 vor Christus bis 4000 vor Christus, Die Ersten Bauern der Westlichen Welt. In: Burenhult, G., Ed., Menschen der Urzeit, Karl Müller, K?ln, 229-250.
[47] Wynn, J.C. and Shoemaker, E.M. (1998) The Day the Sands Caught Fire. Scientific American, 279, 36-45.
[48] Hoyle, F. (1993) Origin of the Universe and Origin of Religion. Moyer Bell Ltd., London, 135 p.
[49] Mayewski, P.A., Rohling, E.E., Stagerc, J.C., Karlénd, W., Maascha, K.A., Meeker, L.D., et al. (2004) Holocene Climate Variability. Quaternary Research, 62, 243-255.
http://dx.doi.org/10.1016/j.yqres.2004.07.001
[50] Chappellaz, J., Blumier T., Raynaud, D., Barnola, J.M., Schwander, J. and Stauffert, B. (1993) Synchronos Changes in atmospheric CH4 and Greenland Climate between 40 and 8 kyr BP. Nature, 366, 443-445. http://dx.doi.org/10.1038/366443a0
[51] Da Costa, K. (2004) Die Natuf-Periode: Anf?nge sesshaften Lebens. In: Burenhult, G., Ed., Menschen der Urzeit, Karl Müller, K?ln, 234-236.
[52] Rowley-Conwy, P. (2004) Abu Hureyra: Die Ersten Bauern der Welt. In: Burenhult, G., Ed., Menschen der Urzeit, Karl Müller, K?ln, 239.
[53] Scholl, M. and Risch, H. (1976) Oxygen and Carbon Isotope Analysis on Planktonic Foraminifera of Core 01-188 P (Southern Red Sea). Geologisches Jahrbuch, 17, 15-32.
[54] Friedman, G.M. (1972) Significance of Red Sea in Problem of Evaporites and Basinal Limestones. Bulletin American Association Petroleum Geology, 56, 1072-1086.
[55] Platon, A. (1994) S?mtliche Werke 04. Timaios, Kritias, Minos, Nomoi. Rowohlt, Reinbek.
[56] Palmqvist, L. (2004) Die ersten Bauern der Westlichen Welt. In: Burenhult, G., Ed., Menschen der Urzeit, Karl Müller, K?ln, 229-232.
[57] Arz, H.W., Lamy, F., Po?tzold, J., Müller, P.J. and Prins, M. (2003) Mediterranean Moisture Source for an Early Holocene Humid Period in the Northern Red Sea. Science, 300, 118-121.
http://dx.doi.org/10.1126/science.1080325
[58] Hammer, C. U., Clausen, H.B. and Dansgaard, W. (1980) Greenland Ice-Sheet Evidence of Post-Glacial Volcanism and its Climatic Impact. Nature, 288, 230-235. http://dx.doi.org/10.1038/288230a0
[59] Glass, B.P. (1978) Austral-Asian Microtectites and the Stratigraphic Age of the Australites. Geological Society American Bulletin, 89, 1455-1458.
http://dx.doi.org/10.1130/0016-7606(1978)89<1455:AMATSA>2.0.CO;2
[60] Dubrovo, I. (1990) The Pleistocene Elephants of Siberia. In: Agenbroad, L.D., Ed., Megafauna and Man, University Flagstad Press, 1-8.
[61] Surenian, R. (1989) Shock Metamorphism in the Koefels Structure. Abstracts and Program for the 52nd Annual Meeting of the Meteoritic Society, Vienna, 31 July-4 August 1989, 234.
[62] Tollmann, A.E. (1993) Und die Sintflut gab es doch—Vom Mythos zur Historischen Wahrheit. Droemer Knaur, München, 560 p.
[63] Suess, H.E. (1988) Radiocarbon in Tree Rings. In: Castagnoli, G.C., Ed., Solar-Terrestrial Relationships and the Earth Environment in the Last Millenia, Societa Italia Fisica, Bologna, 135-143.
[64] Koch, H.P. (2000) The Deluvian Impact. Peter Lange, Berlin, 274 p.
[65] Gebel, H.G.K. (2004) Central to What? The Centrality Issue of the LPPNB Mega-Site Phenomenon in Jordan. In: Bienert, H.-D., Gebel, H.G.K. and Neef, R., Eds., Central Settlements in Neolithic Jordan: Proceedings of a Symposium, Wadi Musa, 21-25 July 1997, 1-19.
[66] Rollefson, G.O. (2004) Ain Ghazal: Die groesste Bekannte Neolithische Siedlung. In: Burenhult, G., Ed., Menschen der Urzeit, Karl Müller, Koln, 248-250.
[67] Palmqvist, L. (2004) Kulte bei Catal Hüyük. In: Burenhult, G., Ed., Menschen der Urzeit, Karl Müller, Koln, 242-247.
[68] Alley, R.B., Mayewski, P.A., Sowers, T., Stuiver, M., Taylor, K.C. and Clark, P.U. (1997) Holocene Climatic Instability: A Prominent Widespread Event 8200 Years Ago. Geology, 25, 483-486.
http://dx.doi.org/10.1130/0091-7613(1997)025<0483:HCIAPW>2.3.CO;2
[69] Schott, A. (1934) Das Gilgamesch-Epo. Philipp Reclam Junior, Stuttgart, No. 7235 (2), 122 p.
[70] Schwarz-Mackensen, G. and Schneider, W. (1983) Woe liegen die Hauptliefergebiete für das Rohmaterial donaulandischer Steinbeile und-axte in Mitteleuropa? Archaologisches Korrespondenzblatt, 13, 305-314.
[71] Schwarz-Mackensen, G. and Schneider, W. (1986) Petrographie und Herkunft des Rohmaterials neolithischer Steinbeile und-axte im Nardlichen Harzvorland. Archaologisches Korrespondenzblatt, 16, 29-44.
[72] Schwarz-Mackensen, G. and Schneider, W. (1987) The Raw Material of Neolithic Adzes and Axes in Central Europe: Petrography and Provenance. Antiquity, 61, 66-69.
[73] Schwarz-Mackensen, G. and Schneider, W. (2012) Felsgesteine als Rohmaterial neolithischer Steinbeile und-axte in Mitteleuropa. In: Floss, H., Ed., Steinartefacts—Vom Altpalaolithikum bis in die Neuzeit, Kerns Verlag, Tübingen, 875-892. http://www.booklooker.de/app/result.php?page=1 &recPerPage=10&setMediaType=0&autor=Drewermann%2C+Eugen&titel=Tiefenpsychologie+und+ Exegese+Band+II&&sortOrder=preis_total
[74] Todorova, H. (2009) Oral Communication, Academy of Science, Sofia, Bulgaria.
[75] Koch, H.P. (2000) Sintflut: Die Bibel berichtet von der Urkatastrophe der Menschheit. Verlag Kremayr & Scheriau, Wien, 336 p.
[76] Arz, H.W., Lamy, F. and Potzold, J. (2006) A Pronounced Dry Event Recorded around 4.2 ka in Brine Sediments from the Northern Red Sea. Quaternary Research, 66, 432-441.
http://dx.doi.org/10.1016/j.yqres.2006.05.006
[77] Santorini and Its Eruption in the Late Bronze Age. http://de.wikipedia.org/wiki/Minoische_Eruption
[78] Jens, W. (1987) Das A und das O (Die Offenbarung des Johannes). Radius-Verlag, Stuttgart, 93 p.
[79] Stoffler, D. (2002) Betrothing aus dem Weltall-Asteroiden und Kometen. In: Emmermann, R., Ed., An den Fronten der Forschung, Verhandlungen der Gesellschaft Deutscher Naturforscher und ?rzte 122. Versammlung. Halle, 81-98.
[80] Drewermann, E. (1992) Tiefenpsychologie und Exeges, Band 2. Walter-Verlag, Olten und Freiburg im Breisgau, 851 p.
[81] Ellul, J. (1981) Apokalypse. Die Offenbarung der Johannes-Enthüllung der Wirklichkeit. Neukirchener Verlag, Neukirchen-Vluyn, 263 p.
[82] Clifton, H.E. (1988) Sedimentologic Relevance of Convulsive Geologic Events. Geological Society of America Special Papers, 229, 1-6.
[83] Müller, A.M.K. (1981) Interdisziplinare Forschung als Geschichtliche Herausforderung. Pressestelle der Universitat Humburg, Hamburg, 37-45.
[84] Arabian Geophysical and Surveying Company (ARGAS) (1968) Seismic Report El Lisan-Ghor Safi: ARGAS unpubl. Report. Jordan Natural Resources Authority, Amman.                                           eww150107lx