Separation of Fe3O4 Nanoparticles from Water by Sedimentation in a Gradient Magnetic Field

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53697#.VM85jyzQrzE

ABSTRACT

Sedimentation dynamics of magnetite (γ-Fe3O4) nanopowders (10 – 20 nm) in water in the presence of a gradient magnetic field was studied by optical and Nuclear Magnetic Resonance (NMR) relaxometry methods. The magnetic field B ≤ 0.3 T, dB/dz ≤ 0.13 T/cm was produced by the system of permanent strip magnets. The initial sedimentation rate of the nanoparticles in water and under magnetic fields is higher for less concentrated suspensions (c0 = 0.1 g/l) than for more concentrated ones (c0 = 1 g/l). This might be connected with the formation of gel structures due to strong magnetic attraction between ferromagnetic nanoparticles. In the gravitation field, the suspensions of the particles (10 – 20 nm) remain stable for over 20 hours. The sedimentation process can be greatly accelerated by the action of a vertical gradient magnetic field, reducing the sedimentation time down to several minutes. In a gradient magnetic field enhanced by a steel grid, sedimentation of the nanopowder (c0 = 0.1 g/l) for 180 minutes resulted in reduction of the iron concentration in water down to 0.4 mg/l. In flowing water regime, the residual iron concentration in water 0.3 mg/l is reached after 80 minutes.

Cite this paper

Medvedeva, I. , Bakhteeva, I. , Zhakov, S. , Revvo, A. , Uimin, M. , Yermakov, A. , Byzov, I. , Mysik, A. and Shchegoleva, N. (2015) Separation of Fe3O4 Nanoparticles from Water by Sedimentation in a Gradient Magnetic Field. Journal of Water Resource and Protection, 7, 111-118. doi: 10.4236/jwarp.2015.72009.

References

[1] Tang, S.C.N. and Lo, I.M.C. (2013) Magnetic Nanoparticles: Essential Factors for Sustainable Environmental Applications. Water Research, 47, 2613-2632.
http://dx.doi.org/10.1016/j.watres.2013.02.039
[2] Woo, K., Hong, J., Choi, S., Lee, H.-W., Ahn, J.-P., Kim, C.S. and Lee, S.W. (2004) Easy Synthesis and Magnetic Properties of Iron Oxide Nanoparticles. Chemical Materials, 16, 2814-2818.
http://dx.doi.org/10.1021/cm049552x
[3] Song, Y., Wang, R., Rong, R., Ding, J., Liu, J., Li, R., Liu, Z., Li, H., Wang, X., Zhang, J. and Fang, J. (2011) Synthesis of Well-Dispersed Aqueous-Phase Magnetite Nanoparticles and Their Metabolism as an MRI Contrast Agent for the Reticuloendothelial System. European Journal of Inorganic Chemistry, 22, 3303-3313.
http://dx.doi.org/10.1002/ejic.201100017
[4] Ullrich, A. and Horn, S. (2013) Structural Investigations on Differently Sized Monodisperse Iron Oxide Nanoparticles Synthesized by Remineralization of Apoferritin Molecules. Journal of Nanoparticle Research, 15, 1821.
http://dx.doi.org/10.1007/s11051-013-1821-0
[5] Savage, N. and Diallo, M.S. (2005) Nanomaterials and Water Purification: Opportunities and Challenges. Journal of Nanoparticle Research, 7, 331-342.
http://dx.doi.org/10.1007/s11051-005-7523-5
[6] Tiwari, D.K., Behari, J. and Sen, P. (2008) Application of Nanoparticles in Waste Water Treatment. World Applied Science Journal, 3, 417-433.
[7] Mandel, K. and Hutter, F. (2012) The Magnetic Nanoparticle Separation Problem. Nano Today, 7, 485-487.
http://dx.doi.org/10.1016/j.nantod.2012.05.001
[8] Medvedeva, I., Uimin, M., Yermakov, A., Mysik, A., Byzov, I., Nabokova, T., Gaviko, V., Shchegoleva, N., Zhakov, S., Tsurin, V., Linnikov, O., Rodina, I., Platonov, V. and Osipov, V. (2012) Sedimentation of Fe3O4 Nanosized Magnetic Particles in Water Solution Enhanced in a Gradient Magnetic Field. Journal of Nanoparticle Research, 14, 1-11.
[9] Medvedeva, I., Bakhteeva, Ju., Zhakov, S., Revvo, A., Bysov, I., Uimin, M., Yermakov, A. and Mysik, A. (2013) Sedimentation and Aggregation of Magnetite Nanoparticles in Water by a Gradient Magnetic Field. Journal of Nanoparticle Research, 15, 2054.
http://dx.doi.org/10.1007/s11051-013-2054-y
[10] Phenrat, T., Saleh, N., Sirk, K., Tilton, R.D. and Lowry, G.V. (2007) Aggregation and Sedimentation of Aqueous Nanoscale Zerovalent Iron Dispersions. Environmental Science Technology, 41, 284-290.
http://dx.doi.org/10.1021/es061349a
[11] Goya, G.F., Bergio, T.S., Fonseca, F.C. and Morales, M.P. (2003) Static and Dynamic Magnetic Properties of Spherical Magnetite Nanoparticles. Journal of Applied Physics, 94, 3520-3528.
http://dx.doi.org/10.1063/1.1599959
[12] Yavuz, C.T., Mayo, J.T., Yu, W.W., Prakash, A., Falkner, J.C., Yean, S., Cong, L., Shipley, H.J., Kan, A., Tomson, M., Natelson, D. and Colvin, V. (2006) Low-Field Magnetic Separation of Monodisperse Fe3O4 Nanocrystals. Science, 314, 964-967.
http://dx.doi.org/10.1126/science.1131475
[13] Kortov, V.S., Ermakov, A.E., Zatsepin, A.F., Uimin, M.A., Nikiforov, S.V., Mysik, A.A. and Gaviko, V.S. (2008) Specific Features of Luminescence Properties of Nanostructured Aluminum Oxide. Physics of the Solid State, 50, 957-961.
http://dx.doi.org/10.1134/S1063783408050259
[14] Mitreiter, I., Oswald, S.E. and Stallmach, F. (2010) Investigation of Iron(III)-Release in the Pore Water of Natural Sands by NMR Relaxometry. The Open Magnetic Resonance Journal, 3, 46-51.
[15] Furst, E.M. and Gast, A.P. (2000) Dynamics and Lateral Interactions of Dipolar Chains. Physical Review E, 62, 6916-6925.
http://dx.doi.org/10.1103/PhysRevE.62.6916
[16] Martínez-Pedrero, F., El-Harrak, A., Fernández-Toledano, J.C., Tirado-Miranda, M., Baudry, J., Schmitt, A., Bibette, J. and Callejas-Fernández, J. (2008) Kinetic Study of Coupled Field-Induced Aggregation and Sedimentation Processes Arising in Magnetic Fluids. Physical Review E, 78, Article ID: 011403.
http://dx.doi.org/10.1103/PhysRevE.78.011403
[17] Eberbeck, D., Wiekhorst, F., Steinhoff, U. and Trahms, L. (2006) Aggregation Behaviour of Magnetic Nanoparticle Suspensions Investigated by Magnetorelaxometry. Journal of Physics Condensed Matter, 18, S2829-S2846.
http://dx.doi.org/10.1088/0953-8984/18/38/S20
[18] Gómez-Lopera, S., Arias, J., Gallardo, V. and Delgado, A. (2006) Stability of Magnetite/Poly(Lactic Acid) Core/Shell Nanoparticles. Langmuir, 22, 2816-2821.
http://dx.doi.org/10.1021/la0530079
[19] Berret, J-F., Sandre, O. and Mauger, A. (2007) Size Distribution of Superparamagnetic Particles Determined by Magnetic Sedimentation. Langmuir, 23, 2993-2999.
http://dx.doi.org/10.1021/la061958w
[20] Hygienic Standards for Drinking Water in Russian Federation 2.1.4.1116-02.                 eww150202lx

Preparation and Characterization of Subsurface Silver Particulate Films on Polymer Blends of Polystyrene/Poly(2-vinylpyridine)/Poly(vinylpyrollidone)/Poly(4-vinylpyridine)

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53523#.VMdF_yzQrzE

ABSTRACT

Silver particulate thin films on softened polymer blends of Polystyrene (PS)/Poly(2-vinyl pyridine) (P2VP), PS/Poly(4-vinylpyridine) (P4VP), and Poly(vinylpyrollidone) (PVP)/P4VP at a rate of 0.4 nm/s held at a temperature of 457 K in vacuum of 8 × 10-6 Torr by evaporation are deposited. These silver films were characterized by their electrical behavior, optical properties and Scanning electron microscopy (SEM). Silver films deposited on softened PS, and PVP give rise to a very high room temperature resistance approaching that of the substrate resistance due to the formation of a highly agglomerated structure. On the other hand, silver films on softened P2VP and P4VP gives rise to a room temperature resistance in the range of tens to a few hundred MΩ/ which is desirable for device applications. Silver films on the composites of PS/P2VP, PS/P4VP and PVP/P4VP show resistances at room temperature. The optical and plasmonic response of Ag nanoparticles onto thin layers of blends shows encapsulation of nanoparticles. The electrical properties and SEM of silver nanoparticles on the thin layers of polymer blends indicate the formation of much smaller, narrower dispersion and wide size distribution.

Cite this paper

Pandey, P. (2015) Preparation and Characterization of Subsurface Silver Particulate Films on Polymer Blends of Polystyrene/Poly(2-vinylpyridine)/Poly(vinylpyrollidone)/Poly(4-vinylpyridine). Soft Nanoscience Letters, 5, 3-11. doi: 10.4236/snl.2015.51002.

References

[1] Yonzon, C.R., Stuart, D.A., Zhang, X., Mcfarland, A.D., Haynes, C.L. and Duyne, R.P.V. (2005) Towards Advanced Chemical and Biological Nanosensors—An Overview. Talanta, 67, 438-448.
http://dx.doi.org/10.1016/j.talanta.2005.06.039
[2] Son, W., et al. (2004) Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromolecular Rapid Communications, 25, 1632-1637.
http://dx.doi.org/10.1002/marc.200400323
[3] Doty, R.C., et al. (2005) Stabilization and Functionalization of Metallic Nanoparticles. Chemistry of Materials, 17, 4630-4635.
http://dx.doi.org/10.1021/cm0508017
[4] Heilmann, A. (2002) Polymer Films with Embedded Metal Nanoparticles. Springler, Berlin.
[5] Mayer, A.B.R. (2001) Colloidal Metal Nanoparticles Dispersed in Amphiphilic Polymers. Polymers for Advanced Technologies, 12, 96-106.
http://dx.doi.org/10.1002/1099-1581(200101/02)12:1/2<96::AID-PAT943>3.0.CO;2-G
[6] Beecroft, L.L. (1997) Nanocomposite Materials for Optical Applications. Chemistry of Materials, 9, 1302-1317.
http://dx.doi.org/10.1021/cm960441a
[7] Caseri, W. (2000) Nanocomposites of Polymers and Metals or Semiconductors: Historical Background and Optical Properties Macromol. Rapid Communications, 21, 705-722.
http://dx.doi.org/10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3
[8] Eilers, H., Biswas, A., Pounds, T.D. and Norton, M.G. (2006) Teflon AF/Ag Nanocomposites with Tailored Optical Properties. Journal of Materials Research, 21, 2168-2171.
http://dx.doi.org/10.1557/jmr.2006.0267
[9] Wang, Y., Li, Y., Yang, S., Zhang, G., An, D., Wang, C., Yang, Q., Chen, X., Jing, X. and Wei, Y. (2006) A Convenient Route to Polyvinyl Pyrrolidone/Silver Nanocomposite by Electrospinning. Nanotechnology, 17, 3304-3307.
http://dx.doi.org/10.1088/0957-4484/17/13/037
[10] Bronstein, L.M., Sidorov, S.N. and Valetsky, P.M. (2004) Nanostructured Polymeric Systems as Nanoreactors for Nanoparticle Formation. Russian Chemical Reviews, 73, 501-515.
http://dx.doi.org/10.1070/RC2004v073n05ABEH000782
[11] Wang, X., Zuo, J., Keil, P. and Grundmeier, G. (2007) Comparing the Growth of PVD Silver Nanoparticles on Ultra Thin Fluorocarbon Plasma Polymer Films and Self-Assembled Fluoroalkyl Silane Monolayers. Nanotechnology, 18, 265303-265313.
http://dx.doi.org/10.1088/0957-4484/18/26/265303
[12] Kunz, M.S., Shull, K.R. and Kellock, A.J. (1992) Morphologies of Discontinuous Gold Films on Amorphous Polymer Substrates. Journal of Applied Physics, 72, 4458-4460.
http://dx.doi.org/10.1063/1.352362
[13] Rao, K.M., Pattabi, M., Sainkar, S.R., Lobo, A., Kulkarni, S.K., Uchil, J. and Sastry, M.S. (1999) Preparation and Characterization of Silver Particulate Structure Deposited on Softened Poly(4-vinylpyridine) Substrate. Journal of Physics D: Applied Physics, 32, 2327-2336.
http://dx.doi.org/10.1088/0022-3727/32/18/303
[14] Rao, K.M. and Pattabi, M. (2001) Effect of Polymer-Metal Particle Interaction on the Structure of Particulate Silver Films Formed on Softened Polymer Substrates. Journal of New Materials for Electrochemical Systems, 4, 11-15.
[15] Parashar, P. (2012) Electrical Behaviour of Discontinuous Silver Films Deposited on Compatible Polystyrene/Poly(2- vinylpyridine) Composite. Journal of Materials Science: Materials in Electronics, 23, 468-473.
http://dx.doi.org/10.1007/s10854-011-0418-6
[16] Hassell, T., Yoda, S., Howdle, S.M. and Brown, P.D. (2006) Microstructural Characterization of Silver/Polymer Nanocomposites Prepared Using Supercritical Carbon Dioxide. Journal of Physics: Conference Series, 26, 276-279.
[17] Parashar, P. (2012) Structural Properties of Silver Particulate Films Deposited on Softened Polymer Blends of Polystyrene/Poly (2-vinylpyridine). Journal of Materials Science: Materials in Electronics, 23, 1169-1173.
http://dx.doi.org/10.1007/s10854-011-0567-7
[18] Parashar, P., Ramakrishna, K., Ramaprasad, A.T. (2011) A Study on Compatibility of Polymer Blends of Polystyrene/Poly(4-vinylpyridine). Journal of Applied Polymer Science, 12, 1729-1735.
http://dx.doi.org/10.1002/app.33314
[19] Haoyan, W. and Eilers, H. (2008) Electrical Conductivity of Thin-Film Composites Containing Silver Nanoparticles Embedded in a Dielectric Fluoropolymer Matrix. Thin Solid Films, 517, 575-581.
http://dx.doi.org/10.1016/j.tsf.2008.06.093
[20] Kiesow, A., Morris, J.E., Radehaus, C. and Heilmann, A. (2003) Switching Behavior of Plasma Polymer Films Containing Silver Nanoparticles. Journal of Applied Physics, 94, 6988-6990.
http://dx.doi.org/10.1063/1.1622990
[21] Parashar, P., Pattabi, M. and Gurumurthy, S.C. (2009) Electrical Behaviour of Discontinuous Silver Films Deposited on Softened Polystyrene and Poly(4-vinylpyridine) Blends. Journal of Materials Science: Materials in Electronics, 20, 1182-1185.
http://dx.doi.org/10.1007/s10854-008-9848-1
[22] Rao, K.M., Pattabi, M., Mayya, K.S., Sainkar, S.R. and Sastry, M.S. (1997) Preparation and Characterization of Silver Particulate Films on Softened Polystyrene Substrates. Thin Solid Films, 310, 97-101.
http://dx.doi.org/10.1016/S0040-6090(97)00358-1
[23] Fritzsche, W., Porwol, H., Wiegand, A., Boronmann, S. and Khler, J.M. (1998) In-Situ Formation of Ag-Containing Nano-particles in Thin Polymer Film. Nanostructured Materials, 10, 89-97.
http://dx.doi.org/10.1016/S0965-9773(98)00023-3
[24] Akamatsu, K., Takei, S., Mizuhata, M., Kajinami, A., Deki, S., Fujii, M., Hayashi, S. and Yamamoto, K. (2000) Preparation and Characterization of Polymer Thin Films Containing Silver and Silver Sulfide Nanoparticles. Thin Solid Films, 359, 55-60.
http://dx.doi.org/10.1016/S0040-6090(99)00684-7
[25] Carotenuto, G. (2001) Synthesis and Characterization of Poly(N-vinylpyrrolidone) Filled by Monodispersed Silver Clusters with Controlled Size. Applied Organometallic Chemistry, 15, 344-351.
http://dx.doi.org/10.1002/aoc.165
[26] Kim, J.Y., Shin, D.H., Ihn, K.J. and Suh, K.D. (2003) Amphiphilic Polyurethane-co-Polystyrene Network Films Containing Silver Nanoparticles. Journal of Industrial and Engineering Chemistry, 9, 37-44.
[27] Heilmann, A., Quinten, M. and Werner, J. (1998) Optical Response of Thin Plasma-Polymer Films with Non-Spherical Silver Nanoparticles. The European Physical Journal B, 3, 455-461.
http://dx.doi.org/10.1007/s100510050335
[28] Takele, H., Greve, H., Pochstein, C., Zaporojtchenko, V. and Faupel, F. (2006) Plasmonic Properties of Ag Nanoclusters in Various Polymer Matrices. Nanotechnology, 17, 3499-3505.
http://dx.doi.org/10.1088/0957-4484/17/14/023
[29] Mandal, S., Arumgam, S.K., Pasricha, R. and Sastry, M. (2005) Silver Nanoparticles of Variable Morphology Synthesized in Aqueous Foams as Novel Templates. Bulletin of Materials Science, 28, 503-510.
http://dx.doi.org/10.1007/BF02711244
[30] Heilmann, A., Kiesov, A., Gruner, M. and Kreibig, U. (1999) Optical and Electrical Properties of Embedded Silver Nanoparticles at Low Temperatures. Thin Solid Films, 343-344, 175-178.
http://dx.doi.org/10.1016/S0040-6090(98)01599-5                                                              eww150127lx

Chlorambucil Encapsulation into PLGA Nanoparticles and Cytotoxic Effects in Breast Cancer Cell

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53000#.VK9BqsnQrzE

ABSTRACT

The present work aimed to develop and evaluate a colloidal system composed of poly (DL-lactide-co-glycolide) (PLGA) nanoparticles (NPs) associated with chlorambucil (CHB) and its effects on cancer cells. The nanoparticles showed %EE (>92%), a mean particle size in the range of 240 to 334 nm and zeta potential of -16.7 to -26.0 mV. In vitro release profile showed a biphasic pattern, with an initial burst for all formulations. The scanning electron microscopy of CHB-nanoparticles showed regular spherical shapes, smooth surface without aggregations. Differential scanning calorimetry thermograms, UV-vis absorption, fluorescence emission and Fourier transform infrared spectroscopy were performed showing the entrapment of the antitumoral in drug delivery system. CHB encapsulated in PLGA nanoparticles decrease the survival rates of the breast cancer cells: 68.9% reduction of cell viability on MCF-7 cell line and 59.7% on NIH3T3. Our results indicated that polymeric nanoparticles produced by classical methods are efficient drug delivery systems for CHB.

Cite this paper

Dias, D. , Joanitti, G. , Azevedo, R. , Silva, L. , Lunardi, C. and Gomes, A. (2015) Chlorambucil Encapsulation into PLGA Nanoparticles and Cytotoxic Effects in Breast Cancer Cell. Journal of Biophysical Chemistry, 6, 1-13. doi: 10.4236/jbpc.2015.61001.

References

[1] Zhang, H., Ye, Z.W. and Lou, Y.J. (2004) Metabolism of Chlorambucil by Rat Liver Microsomal Glutathione S-Transferase. Chemico-Biological Interactions, 149, 61-67.
http://dx.doi.org/10.1016/j.cbi.2003.07.002
[2] Schmidt, M. (2014) Chemotherapy in Early Breast Cancer: When, How and Which One? Breast Care (Basel), 9, 154- 160.
http://dx.doi.org/10.1159/000363755
[3] Cummings, S.R., Tice, J.A., Bauer, S., Browner, W.S., Cuzick, J., Ziv, E., Vogel, V., Shepherd, J., Vachon, C., Smith- Bindman, R. and Kerlikowske, K. (2009) Prevention of Breast Cancer in Postmenopausal Women: Approaches to Estimating and Reducing Risk. Journal of the National Cancer Institute, 101, 384-398.
http://dx.doi.org/10.1093/jnci/djp018
[4] Zhang, W.J., Feng, M.L., Zheng, G.P., Chen, Y., Wang, X.D., Pen, B., Yin, J., Yu, Y.H. and He, Z.M. (2012) Chemoresistance to 5-Fluorouracil Induces Epithelial-Mesenchymal Transition via Up-Regulation of Snail in MCF7 Human Breast Cancer Cells. Biochemical and Biophysical Research Communications, 417, 679-685.
http://dx.doi.org/10.1016/j.bbrc.2011.11.142
[5] Bergh, J., Jonsson, P.E., Glimelius, B., Nygren, P. and Care, S.B.-G.S.C.O.T.A.I.H. (2001) A Systematic Overview of Chemotherapy Effects in Breast Cancer. Acta Oncologica, 40, 253-281.
http://dx.doi.org/10.1080/02841860151116349
[6] Anderson, W.F., Rosenberg, P.S., Prat, A., Perou, C.M. and Sherman, M.E. (2014) How Many Etiological Subtypes of Breast Cancer: Two, Three, Four, or More? Journal of the National Cancer Institute, 106, 1-11.
[7] Pettersson, A., Graff, R.E., Ursin, G., Santos Silva, I.D., McCormack, V., Baglietto, L., Vachon, C., Bakker, M.F., Giles, G.G., Chia, K.S., Czene, K., Eriksson, L., Hall, P., Hartman, M., Warren, R.M., Hislop, G., Chiarelli, A.M., Hopper, J.L., Krishnan, K., Li, J., Li, Q., Pagano, I., Rosner, B.A., Wong, C.S., Scott, C., Stone, J., Maskarinec, G., Boyd, N.F., van Gils, C.H. and Tamimi, R.M. (2014) Mammographic Density Phenotypes and Risk of Breast Cancer: A Meta-Analysis. Journal of the National Cancer Institute, 106, 1-11.
[8] Bielawski, K., Bielawska, A., Muszynska, A., Poplawska, B. and Czarnomysy, R. (2011) Cytotoxic Activity of G3 PAMAM-NH2 Dendrimer-Chlorambucil Conjugate in Human Breast Cancer Cells. Environmental Toxicology and Pharmacology, 32, 364-372.
http://dx.doi.org/10.1016/j.etap.2011.08.002
[9] Benitah, N., de Lorimier, L.-P., Gaspar, M. and Kitchell, B.E. (2003) Chlorambucil-Induced Myoclonus in a Cat with Lymphoma. Journal of the American Animal Hospital Association, 39, 283-287.
http://dx.doi.org/10.5326/0390283
[10] Hehn, S.T., Dorr, R.T. and Miller, T.P. (2003) Mood Alterations in Patients Treated with Chlorambucil. Clinical lymphoma, 4, 179-182.
http://dx.doi.org/10.3816/CLM.2003.n.028
[11] Reux, B., Weber, V., Galmier, M.J., Borel, M., Madesclaire, M., Madelmont, J.C., Debiton, E. and Coudert, P. (2008) Synthesis and Cytotoxic Properties of New Fluorodeoxyglucose-Coupled Chlorambucil Derivatives. Bioorganic & Medicinal Chemistry, 16, 5004-5020.
http://dx.doi.org/10.1016/j.bmc.2008.03.038
[12] Ganta, S., Paxton, J.W., Baguley, B.C. and Garg, S. (2008) Pharmacokinetics and Pharmacodynamics of Chlorambucil Delivered in Parenteral Emulsion. International Journal of Pharmaceutics, 360, 115-121.
http://dx.doi.org/10.1016/j.ijpharm.2008.04.027
[13] Yordanov, G.G., Bedzhova, Z.A. and Dushkin, C.D. (2010) Preparation and Physicochemical Characterization of Novel Chlorambucil-Loaded Nanoparticles of Poly(Butylcyanoacrylate). Colloid and Polymer Science, 288, 893-899.
http://dx.doi.org/10.1007/s00396-010-2219-5
[14] Descoteaux, C., Leblanc, V., Brasseur, K., Gupta, A., Asselin, E. and Berube, G. (2010) Synthesis of D-and L-Tyrosine- Chlorambucil Analogs Active against Breast Cancer Cell Lines. Bioorganic & Medicinal Chemistry Letters, 20, 7388- 7392.
http://dx.doi.org/10.1016/j.bmcl.2010.10.039
[15] Omoomi, F.D. (2013) Molecular Chlorambucil-Methionine Conjugate: Novel Anti-Cancer Agent against Breast MCF-7 Cell Model. Journal of Cancer Science & Therapy, 5, 75-84.
[16] Millard, M., Gallagher, J.D., Olenyuk, B.Z. and Neamati, N. (2013) A Selective Mitochondrial-Targeted Chlorambucil with Remarkable Cytotoxicity in Breast and Pancreatic Cancers. Journal of Medicinal Chemistry, 56, 9170-9179.
http://dx.doi.org/10.1021/jm4012438
[17] Gomes, A.J., Barbougli, P.A., Espreafico, E.M. and Tfouni, E. (2008) Trans-[Ru(NO)(NH3)4(py)](BF4)3·H2O Encapsulated in PLGA Microparticles for Delivery of Nitric Oxide to B16-F10 Cells: Cytotoxicity and Phototoxicity. Journal of Inorganic Biochemistry, 102, 757-766.
http://dx.doi.org/10.1016/j.jinorgbio.2007.11.012
[18] Gomes, A.J., Espreafico, E.M. and Tfouni, E. (2013) Trans-[Ru(NO)Cl(Cyclam)](PF6)2 and [Ru(NO)(Hedta)] Incorporated in PLGA Nanoparticles for the Delivery of Nitric Oxide to B16-F10 Cells: Cytotoxicity and Phototoxicity. Molecular Pharmaceutics, 10, 3544-3554.
[19] Birnbaum, D., Kosmala, J. and Brannon-Peppas, L. (2000) Optimization of Preparation Techniques for Poly(Lactic Acid-Co-Glycolic Acid) Nanoparticles. Journal of Nanoparticle Research, 2, 173-181.
http://dx.doi.org/10.1023/A:1010038908767
[20] Kranz, H. and Bodmeier, R. (2007) A Novel in Situ Forming Drug Delivery System for Controlled Parenteral Drug Delivery. International Journal of Pharmaceutics, 332, 107-114.
http://dx.doi.org/10.1016/j.ijpharm.2006.09.033
[21] Vandervoort, J. and Ludwig, A. (2002) Biocompatible Stabilizers in the Preparation of PLGA Nanoparticles: A Factorial Design Study. International Journal of Pharmaceutics, 238, 77-92.
http://dx.doi.org/10.1016/S0378-5173(02)00058-3
[22] Wischke, C. and Schwendeman, S.P. (2008) Principles of Encapsulating Hydrophobic Drugs in PLA/PLGA Microparticles. International Journal of Pharmaceutics, 364, 298-327.
http://dx.doi.org/10.1016/j.ijpharm.2008.04.042
[23] Locatelli, E. and Comes Franchini, M. (2012) Biodegradable PLGA-b-PEG Polymeric Nanoparticles: Synthesis, Properties, and Nanomedical Applications as Drug Delivery System. Journal of Nanoparticle Research, 14, 1-17.
http://dx.doi.org/10.1007/s11051-012-1316-4
[24] Manchanda, R., Fernandez-Fernandez, A., Nagesetti, A. and McGoron, A.J. (2010) Preparation and Characterization of a Polymeric (PLGA) Nanoparticulate Drug Delivery System with Simultaneous Incorporation of Chemotherapeutic and Thermo-Optical Agents. Colloids and Surfaces B: Biointerfaces, 75, 260-267.
http://dx.doi.org/10.1016/j.colsurfb.2009.08.043
[25] Danhier, F., Ansorena, E., Silva, J.M., Coco, R., Le Breton, A. and Preat, V. (2012) PLGA-Based Nanoparticles: An Overview of Biomedical Applications. Journal of Controlled Release, 161, 505-522.
http://dx.doi.org/10.1016/j.jconrel.2012.01.043
[26] Makadia, H.K. and Siegel, S.J. (2011) Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel), 3, 1377-1397.
http://dx.doi.org/10.3390/polym3031377
[27] Mao, S., Xu, J., Cai, C., Germershaus, O., Schaper, A. and Kissel, T. (2007) Effect of WOW Process Parameters on Morphology and Burst Release of FITC-Dextran Loaded PLGA Microspheres. International Journal of Pharmaceutics, 334, 137-148.
http://dx.doi.org/10.1016/j.ijpharm.2006.10.036
[28] Gomes, A.J., Assuncao, R.M.N., Rodrigues, G., Espreafico, E.M. and Machado, A.E.D. (2007) Preparation and Characterization of Poly(D,L-lactic-co-glycolic Acid) Nanoparticles Containing 3-(Benzoxazol-2-yl)-7-(N,N-diethyl ami- no)chromen-2-one. Journal of Applied Polymer Science, 105, 964-972.
http://dx.doi.org/10.1002/app.26204
[29] Gomes, A.J., Faustino, A.S., Lunardi, C.N., Lunardi, L.O. and Machado, A.E.H. (2007) Evaluation of Nanoparticles Loaded with Benzopsoralen in Rat Peritoneal Exudate Cells. International Journal of Pharmaceutics, 332, 153-160.
http://dx.doi.org/10.1016/j.ijpharm.2006.09.035
[30] Gomes, A.J., Lunardi, L.O., Marchetti, J.M., Lunardi, C.N. and Tedesco, A.C. (2005) Photobiological and Ultrastructural Studies of Nanoparticles of Poly(lactic-co-glycolic Acid)-Containing Bacteriochlorophyll-a as a Photosensitizer Useful for PDT Treatment. Drug Delivery, 12, 159-164.
http://dx.doi.org/10.1080/10717540590931846
[31] Gomes, A.J., Lunardi, C.N., Lunardi, L.O., Pitol, D.L. and Machado, A.E.H. (2008) Identification of Psoralen Loaded PLGA Microspheres in Rat Skin by Light Microscopy. Micron, 39, 40-44.
http://dx.doi.org/10.1016/j.micron.2007.06.015
[32] Gomes, A.J., Faustino, A.S., Machado, A.E.H., Zaniquelli, M.E.D., Rigoletto, T.D., Lunardi, C.N. and Lunardi, L.O. (2006) Characterization of PLGA Microparticles as a Drug Carrier for 3-Ethoxycarbonyl-2H-benzofuro[3,2-f]-1-ben- zopyran-2-one. Ultrastructural Study of Cellular Uptake and Intracellular Distribution. Drug Delivery, 13, 447-454.
http://dx.doi.org/10.1080/10717540600640369
[33] Tfouni, E., Truzzi, D.R., Tavares, A., Gomes, A.J., Figueiredo, L.E. and Franco, D.W. (2012) Biological Activity of Ruthenium Nitrosyl Complexes. Nitric Oxide-Biology and Chemistry, 26, 38-53.
http://dx.doi.org/10.1016/j.niox.2011.11.005
[34] Tfouni, E., Doro, F.G., Gomes, A.J., da Silva, R.S., Metzker, G., Benini, P.G.Z. and Franco, D.W. (2010) Immobilized Ruthenium Complexes and Aspects of Their Reactivity. Coordination Chemistry Reviews, 254, 355-371.
http://dx.doi.org/10.1016/j.ccr.2009.10.011
[35] Gomes, A.J., Lunardi, L.O., Caetano, F.H., Machado, A.E.H., Oliveira-Campos, A.M.F., Bendhack, L.M. and Lunardi, C.N. (2011) Biodegradable Nanoparticles Containing Benzopsoralens: An Attractive Strategy for Modifying Vascular Function in Pathological Skin Disorders. Journal of Applied Polymer Science, 121, 1348-1354.
http://dx.doi.org/10.1002/app.33427
[36] Mo, L., Hou, L., Guo, D., Xiao, X., Mao, P. and Yang, X. (2012) Preparation and Characterization of Teniposide PLGA Nanoparticles and Their Uptake in Human Glioblastoma U87MG Cells. International Journal of Pharmaceutics, 436, 815-824.
http://dx.doi.org/10.1016/j.ijpharm.2012.07.050
[37] Wang, Y.C., Xu, G.L., Jia, W.D., Han, S.J., Ren, W.H., Wang, W., Liu, W.B., Zhang, C.H. and Chen, H. (2012) Estrogen Suppresses Metastasis in Rat Hepatocellular Carcinoma through Decreasing Interleukin-6 and Hepatocyte Growth Factor Expression. Inflammation, 35, 143-149.
http://dx.doi.org/10.1007/s10753-011-9299-3
[38] Jyothi, N.V.N., Prasanna, P.M., Sakarkar, S.N., Prabha, K.S., Ramaiah, P.S. and Srawan, G.Y. (2010) Microencapsulation Techniques, Factors Influencing Encapsulation Efficiency. Journal of Microencapsulation, 27, 187-197.
http://dx.doi.org/10.3109/02652040903131301
[39] Song, H., Nie, S., Yang, X., Li, N., Xu, H., Zheng, L. and Pan, W. (2010) Characterization and in Vivo Evaluation of Novel Lipid-Chlorambucil Nanospheres Prepared Using a Mixture of Emulsifiers for Parenteral Administration. International Journal of Nanomedicine, 5, 933-942.
http://dx.doi.org/10.2147/IJN.S14596
[40] de Jesus Gomes, A., Lunardi, C.N., Caetano, F.H., Lunardi, L.O. and da Hora Machado, A.E. (2006) Phagocytosis of PLGA Microparticles in Rat Peritoneal Exudate Cells: A Time-Dependent Study. Microscopy and Microanalysis, 12, 399-405.
http://dx.doi.org/10.1017/S1431927606060284
[41] Gupta, H., Aqil, M., Khar, R.K., Ali, A., Bhatnagar, A. and Mittal, G. (2010) Sparfloxacin-Loaded PLGA Nanoparticles for Sustained Ocular Drug Delivery. Nanomedicine: Nanotechnology Biology and Medicine, 6, 324-333.
http://dx.doi.org/10.1016/j.nano.2009.10.004
[42] Gunasekaran, S., Kumaresan, S., Balaji, R.A., Anand, G. and Seshadri, S. (2008) Vibrational Spectra and Normal Coordinate Analysis on Structure of Chlorambucil and Thioguanine. Pramana: Journal of Physics, 71, 1291-1300.
http://dx.doi.org/10.1007/s12043-008-0183-0
[43] Yang, J., Lee, C.H., Park, J., Seo, S., Lim, E.K., Song, Y.J., Suh, J.S., Yoon, H.G., Huh, Y.M. and Haam, S. (2007) Antibody Conjugated Magnetic PLGA Nanoparticles for Diagnosis and Treatment of Breast Cancer. Journal of Materials Chemistry, 17, 2695-2699.
http://dx.doi.org/10.1039/b702538f
[44] Garcia, X., Escribano, E., Domenech, J., Queralt, J. and Freixes, J. (2011) In Vitro Characterization and in Vivo Analgesic and Anti-Allodynic Activity of PLGA-Bupivacaine Nanoparticles. Journal of Nanoparticle Research, 13, 2213- 2223.
http://dx.doi.org/10.1007/s11051-010-9979-1
[45] Mi, F.L., Lin, Y.M., Wu, Y.B., Shyu, S.S. and Tsai, Y.H. (2002) Chitin/PLGA Blend Microspheres as a Biodegradable Drug-Delivery System: Phase-Separation, Degradation and Release Behavior. Biomaterials, 23, 3257-3267.
http://dx.doi.org/10.1016/S0142-9612(02)00084-4
[46] Namazi, H. and Jafarirad, S. (2011) In Vitro Photo-Controlled Drug Release System Based on Amphiphilic Linear-Dendritic Diblock Copolymers; Self-Assembly Behavior and Application as Nanocarrier. Journal of Pharmaceutical Sciences, 14, 162-180.
[47] Ray, R.S., Rana, B., Swami, B., Venu, V. and Chatterjee, M. (2006) Vanadium Mediated Apoptosis and Cell Cycle Arrest in MCF7 Cell Line. Chemico-Biological Interactions, 163, 239-247.
http://dx.doi.org/10.1016/j.cbi.2006.08.006
[48] Fonseca, C., Simoes, S. and Gaspar, R. (2002) Paclitaxel-Loaded PLGA Nanoparticles: Preparation, Physicochemical Characterization and in Vitro Anti-Tumoral Activity. Journal of Controlled Release, 83, 273-286.
http://dx.doi.org/10.1016/S0168-3659(02)00212-2
[49] Averineni, R.K.S., Shavi, G.V., Gurram, A.K., Deshpande, P.B., Arumugam, K., Maliyakkal, N., Meka, S.R. and Nayahirama, U. (2012) PLGA 50:50 Nanoparticles of Paclitaxel: Development, in Vitro Anti-Tumor Activity in BT-549 Cells and in Vivo Evaluation. Bulletin of Materials Science, 35, 319-326.
http://dx.doi.org/10.1007/s12034-012-0313-7
[50] Mukerjee, A. and Vishwanatha, J.K. (2009) Formulation, Characterization and Evaluation of Curcumin-Loaded PLGA Nanospheres for Cancer Therapy. Anticancer Research, 29, 3867-3875.
[51] Pirooznia, N., Hasannia, S., Lotfi, A.S. and Ghanei, M. (2012) Encapsulation of Alpha-1 Antitrypsin in PLGA Nanoparticles: In Vitro Characterization as an Effective Aerosol Formulation in Pulmonary Diseases. Journal of Nanobiotechnology, 10, 1-15.
[52] Ribeiro-Costa, R.M., Alves, A.J., Santos, N.P., Nascimento, S.C., Goncalves, E.C., Silva, N.H., Honda, N.K. and Santos-Magalhaes, N.S. (2004) In Vitro and in Vivo Properties of Usnic Acid Encapsulated into PLGA-Microspheres. Journal of Microencapsulation, 21, 371-384.
http://dx.doi.org/10.1080/02652040410001673919                                                   eww150109lx

Spray-Dry Agglomerated Nanoparticles in Ordinary Portland Cement Matrix

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50665#.VEhYjVfHRK0

ABSTRACT

Nano-sized particles have got a focus of great interest for the past decade. These ultrafine particles can have an effect in multiple ways on concrete technology. Although most of the effects of nanoparticles are desired, a huge surface area introduced by nanoparticles also incorporates negative effects, such as loss of workability and safety aspects. Agglomeration of nano-sized particles by spray-drying is one potential method to overcome the negative effects. In this study, ultra-fine material was dispersed and agglomerated successfully. Agglomerate structure was analyzed and performance was evaluated with mortar samples. Agglomerated nano-sized material had micron-sized inner porosity, which enabled water penetration into the agglomerates. In water exposure, agglomerates did not dissolve although some of binder glue and dispersing agent leaked out. Water penetration and organic material leaking enabled high reactivity and workability of the agglomerated nanoparticles. In spite of the high reactivity of agglomerated nanoparticles, slightly lower final compression strengths were observed with agglomerated ultrafine particles. The results of this study can be used in concrete technology when further developing admixture technologies and recipe designs. The negative side-effects of the agglomerated nanoparticles can be overcome and accounted for within application areas.

Cite this paper

Vehmas, T. , Kanerva, U. and Holt, E. (2014) Spray-Dry Agglomerated Nanoparticles in Ordinary Portland Cement Matrix. Materials Sciences and Applications, 5, 837-844. doi: 10.4236/msa.2014.512084.

References

[1] Maynard, A.D. (2006) Nanotechnology: Assessing the Risks. Nano Today, 1, 22-33.
http://dx.doi.org/10.1016/S1748-0132(06)70045-7
[2] Maynard, A.D. (2007) Nanotechnology: The Next Big Thing, or Much Ado about Nothing? Annals of Occupational Hygiene, 51, 1-12.
http://dx.doi.org/10.1093/annhyg/mel071
[3] Sanchez, F. and Sobolev, K. (2010) Nanotechnology in Concrete—A Review. Construction and Building Materials, 24, 2060-2071.
http://dx.doi.org/10.1016/j.conbuildmat.2010.03.014
[4] Pacheco-Torgal, F. and Jalali, S. (2011) Nanotechnology: Advantages and Drawbacks in the Field of Construction and Building Materials. Construction and Building Materials, 25, 582-590.
http://dx.doi.org/10.1016/j.conbuildmat.2010.07.009
[5] Li, G.Y., Wang, P.M. and Zhao, X. (2005) Mechanical Behavior and Microstructure of Cement Composites Incorporating Surface-Treated Multi-Walled Carbon Nanotubes. Carbon, 43, 1239-1245.
http://dx.doi.org/10.1016/j.carbon.2004.12.017
[6] Li, G.Y., Wang, P.M. and Zhao, X. (2007) Pressure-Sensitive Properties and Microstructure of Carbon Nanotube Reinforced Cement Composites. Cement and Concrete Composites, 29, 377-382.
http://dx.doi.org/10.1016/j.cemconcomp.2006.12.011
[7] Ibusuki, T. and Takeuchi, K. (1994) Removal of Low Concentration Nitrogen Oxides through Photoassisted Heterogeneous Catalysis. Journal of Molecular Catalysis, 88, 93-102.
http://dx.doi.org/10.1016/0304-5102(93)E0247-E
[8] Ballari, M.M., Hunger, M., Hasken, G. and Brouwers, H.J.H. (2010) NOx Photocatalytic Degradation Employing Concrete Pavement Containing Titanium Dioxide. Applied Catalysis B: Environmental, 95, 245-254.
http://dx.doi.org/10.1016/j.apcatb.2010.01.002
[9] Sato, T. and Diallo, F. (2010) Seeding Effect of Nano-CaCO3 on the Hydration of Tricalcium Silicate. Journal of the Transportation Research Record, 2141, 61-67.
[10] Mondal, P., Shah, S., Marks, L. and Gaitero, J. (2010) Comparative Study of the Effects of Microsilica and Nanosilica in Concrete. Transportation Research Record, 2141, 6-9.
[11] Cassar, L. (2004) Photocatalysis of Cementitious Materials: Clean Buildings and Clean Air. MRS Bulletin, 5, 328-331.
http://dx.doi.org/10.1557/mrs2004.99
[12] Stark, J., Moser, B. and Bellmann, F. (2007) Nucleation and Growth of C-S-H Phases on Mineral Admixtures. Advances in Construction Materials, 531-538.
[13] Blyszko, J., Kiernozycki, W., Guskos, N., Zolnierkiewicz, G., Typek, J., Narkiewicz, U. and Podsiadly, M. (2008) Study of Mechanical Properties of Concrete with Low Concentration of Magnetic Nanoparticles. Journal of Non Crystalline Solids, 354, 4515-4518.
http://dx.doi.org/10.1016/j.jnoncrysol.2008.06.101
[14] Nazari, A. and Riahi, S. (2010) Assessment of the Effects of Fe2O3 Nanoparticles on Water Permeability, Workability, and Setting Time of Concrete. Journal of Composite Materials, 45, 923-930.
http://dx.doi.org/10.1177/0021998310377945
[15] Donaldson, K., Stone, V., Clouter, A., Renwick, L. and MacNee, W. (2001) Ultrafine Particles. Occupational and Environmental Medicine, 58, 211-216.
http://dx.doi.org/10.1136/oem.58.3.211
[16] Shaw, F. and Andrews, M. (1997) Spray Drying, Carbide, Nitride and Boride Materials Synthesis and Processing. Chapman & Hall, London.
[17] Harris, D.C. (2003) Quantitative Chemical Analysis. 6th Edition, W.H. Freeman and Company, New York.
[18] TCE1 (1997) Adiabatic and Semi-Adiabatic Calorimetry to Determine the Temperature Increase in Concrete Due to Hydration Heat of the Cement. Materials and Structures, 30, 451-464.
http://dx.doi.org/10.1007/BF02524773
[19] Darr, G.M. and Ludwig, U. (1973) Determination of Permeable Porosity. Materials and Structures, 6, 185.
[20] Rostasy, F.S., Weib, R. and Wiedemann, G. (1980) Changes of Pore Structure of Cement Mortar due Temperature. Cement and Concrete Research, 10, 157-164.
http://dx.doi.org/10.1016/0008-8846(80)90072-1
[21] Kumar, R. and Bhattacharjee, B. (2003) Porosity, Pore Size Distribution and In-Situ Strength of Concrete. Cement and concrete research, 33, 155-164.
http://dx.doi.org/10.1016/S0008-8846(02)00942-0.                                                                    eww141023lx

Biodegradable Guar Gum Nanoparticles as Carrier for Tamoxifen Citrate in Treatment of Breast Cancer

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50278#.VDNjSlfHRK0

ABSTRACT

We prepared, characterized and studied the biodistribution of tamoxifen citrate (TMX) loaded cross-linked guar gum (GG) nanoparticles (NPs). NPs were prepared via a single step emulsion process and particle size evaluated. The extent of tissue distribution and retention following oral administration of TMX loaded GG NPs and TMX tablet in female albino mice was analyzed over a period of 48 hours. Till 48 hours, the particles remained detectable in both mammary and ovary tissue (estrogen receptors). Uptake and retention of TMX from NPs and tablet in mammary gland and ovary tissue changed with time. Results showed that the uptake and retention of NPs was more in the mammary gland between 24 – 48 hours (11.2% at 24 h; 4.65% at 48 h). As mammary gland is the target organ in breast cancer therapy, it may be concluded that the cross-linked GG NPs are capable of releasing the drug at the target and minimize the uptake and retention in non target tissue, the ovary (7.98% at 24 h; 1.9% at 48 h). Serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) with time were measured. No abnormal changes in the liver enzymes were observed. GG NPs under study can be used as a drug carrier system for treating cancer.

Cite this paper

Sarmah, J. , Bhattacharjee, S. , Roy, S. , Mahanta, R. and Mahanta, R. (2014) Biodegradable Guar Gum Nanoparticles as Carrier for Tamoxifen Citrate in Treatment of Breast Cancer. Journal of Biomaterials and Nanobiotechnology, 5, 220-228. doi: 10.4236/jbnb.2014.54026.

References

[1] http://www.who.int/topics/cancer/
[2] Rabinow, B.E. (2004) Nanosuspensions in Drug Delivery. Nature Reviews Drug Discovery, 39, 785-796.
http://dx.doi.org/10.1038/nrd1494
[3] Meibohm, B. and Derendorf, H. (2002) Pharmacokinetic/Pharmacodynamic Studies in Drug Product Development. Journal of Pharmaceutical Sciences, 91, 18-31.
http://dx.doi.org/10.1002/jps.1167
[4] Scaglione, F. (2002) Can PK/PD Be Used in Everyday Clinical Practice. International Journal of Antimicrobial Agents, 19, 349-353.
http://dx.doi.org/10.1016/S0924-8579(02)00020-1
[5] Duncan, R., Coatsworth, J.K. and Burtles, S. (1998) Preclinical Toxicology of a Novel Polymeric Antitumour Agent: HPMA Copolymer-Doxorubicin (PK1). Human & Experimental Toxicology, 17, 93-104.
http://dx.doi.org/10.1191/096032798678908378
[6] Hopewel, J.W., Duncan, R., Wilding, D. and Chakrabarti, K. (2001) Preclinical Evaluation of the Cardiotoxicity of PK2: A Novel HPMA Copolymer-Doxorubicin-Galactosamine Conjugate Antitumour Agent. Human & Experimental Toxicology, 20, 461-470.
http://dx.doi.org/10.1191/096032701682693017
[7] Mahmood, I. (2001) Interspecies Scaling of Maximum Tolerated Dose of Anticancer Drugs: Relevance to Starting Dose for Phase I Clinical Trials. American Journal of Therapeutics, 8, 109-116.
http://dx.doi.org/10.1097/00045391-200103000-00005
[8] Howell, S.B. (2001) Clinical Applications of a Novel Sustained-Release Injectable Drug Delivery System: DepoFoam Technology. Cancer Journal, 7, 219-227.
[9] Maeda, H. (2001) The Enhanced Permeability and Retention (EPR) Effect in Tumor Vasculature: The Key Role of Tumor-Selective Macromolecular Drug Targeting. Advances in Enzyme Regulation, 41, 189-207.
http://dx.doi.org/10.1016/S0065-2571(00)00013-3
[10] Park, J.W. (2002) Liposome Based Drug Delivery in Breast Cancer Treatment. Breast Cancer Research, 4, 95-99.
http://dx.doi.org/10.1186/bcr432
[11] Goldenberg, D.M. (2002) Targeted Therapy of Cancer with Radiolabeled Antibodies. Journal of Nuclear Medicine, 43, 693-713.
[12] Schipper, N.G.M., Varum, K.M. and Artursson, P. (1996) Chitosan as Absorption Enhancers for Poorly Absorbable Drugs: Influence of Molecular Weight and Degree of Acetylation on Drug Transport across Human Intestinal Epithelia (Caco-29 Cells). Pharmaceutical Research, 13, 1686-1692.
http://dx.doi.org/10.1023/A:1016444808000
[13] Martin, E.A., Brown, K., Gaskell, M., Al-Azzawi, F., Garner, R.C., Boocock, D.J., Mattock, E., Pring, D.W., Dingley, K., Turteltaub, K.W., Smith, L.L. and White, I.N.H. (2003) Tamoxifen DNA Damage Detected in Human Endometrium Using Accelerator Mass Spectrometry. Cancer Research, 63, 8461-8465.
[14] Lashley, M.R., Niedzinski, E.J., Rogers, J.M., Denison, M.S. and Nantz, M.H. (2002) Synthesis and Estrogen Receptor Affinity of a 4-Hydroxytamoxifen-Labeled Ligand for Diagnostic Imaging. Bioorganic & Medicinal Chemistry, 10, 4075-4082.
http://dx.doi.org/10.1016/S0968-0896(02)00329-2
[15] Marcsek, Z., Kocsis, Z., Jakab, M., Szende, B. and Tompa, A. (2004) The Efficacy of Tamoxifen in Estrogen Receptor-Positive Breast Cancer Cells Is Enhanced by a Medical Nutriment. Cancer Biotherapy & Radiopharmaceuticals, 19, 746-753.
http://dx.doi.org/10.1089/cbr.2004.19.746
[16] Heres-Pulido, E.M., Duenas-Garcia, I., Castaneda-Partida, L., Sanchez-Garcia, A., Contreras-Sousa, M., Duran-Dias, A. and Ulrich, G. (2004) Genotoxicity of Tamoxifen Citrate and 4-Nitroquinoline-1-Oxide in the Wing Spot Test Drosophila Melanogaster. Mutagenesis, 19, 187-193.
http://dx.doi.org/10.1093/mutage/geh020
[17] Chodak, G.W. and Kolvenbag, G.J.C.M. (2001) Will the Experience with Tamoxifen in Breast Cancer Help Define the Role of Antiandrogens in Prostate Cancer? Prostate Cancer and Prostatic Diseases, 4, 72-80.
http://dx.doi.org/10.1038/sj.pcan.4500518
[18] Krishnaiah, Y.S.R., Karthikeyan, R.S. and Satyanarayana, V. (2002) A Three-Layer Guar Gum Matrix Tablet for Oral Controlled Delivery of Highly Soluble Metoprolol Tartrate. International Journal of Pharmaceutics, 241, 353-366.
http://dx.doi.org/10.1016/S0378-5173(02)00273-9
[19] Toti, U.S. and Aminabhavi, T.M. (2004) Modified Guar Gum Matrix Tablet for Controlled Release of Diltiazem Hydrochloride. Journal of Controlled Release, 95, 567-577.
http://dx.doi.org/10.1016/j.jconrel.2003.12.019
[20] Soppirnath, K.S. and Aminabhavi, T.M. (2002) Water Transport and Drug Release Study from Cross-Linked Polyacrylamide Grafted Guar Gum Hydrogel Microspheres for the Controlled Release Application. European Journal of Pharmaceutics and Biopharmaceutics, 53, 87-98.
http://dx.doi.org/10.1016/S0939-6411(01)00205-3
[21] Wassel, G.M., Omar, S.M. and Ammar, N.M. (1989) Application of Guar Flour and Prepared Guaran in Tablet Manufacture. Journal of Drug Research, 18, 1-8.
[22] Sarmah, J.K., Mahanta, R., Bhattacharjee, S.K., Mahanta, R. and Biswas, A. (2011) Controlled Release of Tamoxifen Citrate Encapsulated in Cross-Linked Guar Gum Nanoparticles. International Journal of Biological Macromolecules, 49, 390-396.
http://dx.doi.org/10.1016/j.ijbiomac.2011.05.020
[23] Sarmah, J.K., Bhattacharjee, S.K., Mahanta, R. and Mahanta, R. (2009) Preparation of Cross-Linked Guar Gum Nanospheres Containing Tamoxifen Citrate by Single Step Emulsion in Situ Polymer Cross-Linking Method. Journal of Inclusion Phenomena and Macrocyclic Chemistry, 65, 329-334.
[24] Gliko-Kabir, I., Yagen, B., Penhasi, A. and Rubinstein, A. (2000) Phosphated Crosslinked Guar for Colon-Specific Drug Delivery: I. Preparation and Physicochemical Characterization. Journal of Controlled Release, 63, 121-127.
http://dx.doi.org/10.1016/S0168-3659(99)00179-0
[25] Gliko-Kabir, I., Yagen, B., Penhasi, A. and Rubinstein, A. (1998) Low Swelling, Crosslinked Guar and Its Potential Use as Colon-Specific Drug Carrier. Pharmaceutical Research, 15, 1019-1025.
http://dx.doi.org/10.1023/A:1011921925745
[26] Krishnaiah, Y.S.R., Seetha Devi, A., Nageswara Rao, L., Bhaskar Reddy, P.R., Karthikeyan, R.S. and Satyanarayana, V. (2001) Guar Gum as a Carrier for Colon Specific Delivery; Influence of Metronidazole and Tinidazole on in Vitro Release of Albendazole from Guar Gum Matrix Tablets. Journal of Pharmacy and Pharmaceutical Sciences, 4, 235-243.
[27] Gliko-Kabir, I., Yagen, B., Baluom, M. and Rubinstein, A. (2000) Phosphated Crosslinked Guar for Colon-Specific Drug Delivery. II. In Vitro and in Vivo Evaluation in the Rat. Journal of Controlled Release, 63, 129-134.
http://dx.doi.org/10.1016/S0168-3659(99)00180-7
[28] Hard, G.C., Iatropoulos, M.J., Jordan, K., Radi, L., Kaltenberg, O.P., Imondi, A.R. and Williams, G.M. (1993) Major Difference in the Hepatocarcinogenicity and DNA Adduct Forming Ability between Toremifene and Tamoxifen in Female Crl: CD (BR) Rats. Cancer Research, 53, 4534-4541.
[29] Albukhari, A.A., Gashlan, H.M., El-Beshbishy, H.A., Nagy, A.A. and Abdel-Naim, A.B. (2009) Caffeic Acid Phenethyl Ester Protects against Tamoxifen-Induced Hepatotoxicity in Rats. Food and Chemical Toxicology, 47, 1689-1695.
http://dx.doi.org/10.1016/j.fct.2009.04.021
[30] Elefsiniotis, I.S., Pantazis, K.D., Ilias, A., Pallis, L., Mariolis, A., Glynou, I., Kada, H. and Moulakakis, A. (2004) Tamoxifen Induced Hepatotoxicity in Breast Cancer Patients with Pre-Existing Liver Steatosis: The Role of Glucose Intolerance. European Journal of Gastroenterology & Hepatology, 16, 593-598.
http://dx.doi.org/10.1097/00042737-200406000-00013
[31] Jain, A.K., Swarnakar, N.K., Godugu, C., Singh, R.P. and Jain, S. (2011) The Effect of the Oral Administration of Polymeric Nanoparticles on the Efficacy and Toxicity of Tamoxifen. Biomaterials, 32, 503-515.
http://dx.doi.org/10.1016/j.biomaterials.2010.09.037                                                            eww141007lx