Patterns of Health-Risk Behaviors among Jordanian Adolescent Students

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53212#.VLcp8cnQrzE

Author(s)

ABSTRACT

Little information exists about health-risk behaviors in Jordanian adolescents especially among 15 – 19 years olds. The purpose of this study was to assess the patterns of three of health-risk behaviors, namely, diet, physical activity, and tobacco use of the Jordanian adolescent students aged 15 to 19 years old, and to compare the patterns of these behaviors between male and female adolescents. A descriptive cross-sectional design was used. A multi-stage stratified random sample was obtained from the public school educational directorate, which is affiliated to Amman governorate. A random sub sample of eight public comprehensive secondary schools was selected, four schools for females and four schools for males. A total of 750 students (375 boys and 375 girls), their ages between 15 – 19 years were included in the analysis. Data were collected by using two tools: students’ profile structured questionnaire (tool 1), and a modified version of the General School Health Survey questionnaire (tool 2). The findings of this study showed that 10.7% of students were overweight and 4.9% were obese. The majority of students had eaten less than the daily requirements of fruits, vegetables, and milk daily, while the intake of soft drinks was higher than recommended. One-fifth of students had been physically active at least 60 minutes daily. Overall, (55.5%) had tried smoking and 44.0% had smoked any other form of tobacco such as water pipe. Moreover, 62.4% had tried to quit smoking cigarettes. Furthermore, there were significant differences between males and females regarding these risk behaviors. In conclusion, there are problems with Jordanian adolescents relating to diet, physical activity, and tobacco use. The results highlight the need for effective school health program that combines education, counseling and behavioral skill building along with environmental support to enhance students’ efforts, intentions, and strategies to overcome these risk behaviors. In addition, the findings could help policy makers to strength strategies and policies to maintain healthy adolescents and schools.

Cite this paper

Malak, M. (2015) Patterns of Health-Risk Behaviors among Jordanian Adolescent Students. Health, 7, 58-70. doi: 10.4236/health.2015.71008.

References

[1] Smetana, J.G., Campione-Barr, N. and Metzger, A. (2006) Adolescent Development in Interpersonal and Societal Contexts. Annual Review of Psychology, 57, 255-284.
http://dx.doi.org/10.1146/annurev.psych.57.102904.190124
[2] Mulye, T.P., Park, M.J., Nelson, C.D., Adams, S.A., Irwin, C.E. and Brindis, C.D. (2009) Trends in Adolescent and Young Adult Health in the United States. Journal of Adolescent Health, 45, 8-24.
http://download.journals.elsevierhealth.com/pdfs/journals/1054-139X/PIIS1054139X09001244.pdf
http://dx.doi.org/10.1016/j.jadohealth.2009.03.013
[3] McNeely, C. and Blanchard, J. (2009) The Teen Years Explained: A Guide to Healthy Adolescent Development. Johns Hopkins Bloomberg School of Public Health, Center for Adolescent Health, Baltimore.
http://www.jhsph.edu/adolescenthealth
[4] Palamara, P., Molnar, L., Eby, D., Kopinanthan, C., Langford, J., Gorman, J. and Broughton, M. (2012) Review of Young Driver Risk Taking and Its Association with Other Risk Taking Behaviors. Curtin Monash Accident Research Centre and Michigan Centre for advancing Safe Transportation through the Lifespan.
http://deepblue.lib.umich.edu/bitstream/handle/2027.42/94210/102889.pdf?sequence=1
[5] Center for Disease Control and Prevention (2011) School Health Programs: Improving the Health of Our Nation’s Youth. National Center for Chronic Disease Prevention and Health Promotion, Division of Adolescent and School Health, Atlanta.
http://www.cdc.gov/HealthyYouth
[6] Lawrence, R.S., Gootman, J.A. and Sim, L.J., Eds., National Research Council and Institute of Medicine. Committee on Adolescent Health Care Services and Models of Care for Treatment, Prevention, and Healthy Development (2009) Adolescent Health Services: Missing Opportunities. National Academies Press, Washington.
http://books.nap.edu/openbook.php?record_id=12063&page=1
[7] World Health Organization (2014) Adolescent Health.
http://www.who.int/adolescent_health/en/
[8] Department of Statistics (2012) Jordan Statistical Yearbook 2012.
http://www.dos.gov.jo/dos_home_e/main/index.htm
[9] Center for Disease Control and Prevention (2004) Global School-Based Student Health Survey. Jordan GSHS Report, CDC and World Health Organization.
[10] Center for Disease Control and Prevention (2007) Global School-Based Student Health Survey. Jordan GSHS Report, CDC and World Health Organization.
[11] Haddad, L.G., Owies, A. and Mansour, A. (2009) Wellness Appraisal among Adolescents in Jordan: A Model from a Developing Country: A Cross-Sectional Questionnaire Survey. Health Promotion International, 24, 130-139.
http://dx.doi.org/10.1093/heapro/dap013
[12] World Health Organization (2011) Young People: Risks and Solutions.
http://www.who.int/mediacentre/factsheets/fs345/
[13] Youth Risk Behavior Surveillance—United States, 2005.
http://www.cdc.gov/mmwr/PDF/SS/SS5505.pdf
[14] Cohen, J. (1992) A Power Primer. Psychological Bulletin, 112, 155-159.
http://dx.doi.org/10.1037/0033-2909.112.1.155
[15] Center for Disease Control and Prevention (2013) Youth Risk Behavior Surveillance—United States, Morbidity and Mortality Weekly Report (MMWR), Vol. 63. U.S. Department of Health and Human Services and CDC.
http://www.cdc.gov/mmwr
[16] Center for Disease Control and Prevention (2010) The Association between School-Based Physical Activity, Including Physical Education, and Academic Performance. U.S. Department of Health and Human Services, Atlanta.
[17] Abu Baker, N. and Daradkeh, S. (2010) Prevalence of Overweight and Obesity among Adolescents in Irbid Governorate, Jordan. Eastern Mediterranean Health Journal, 16, 657-662.
[18] Hilmy, S.A. and Al Muzahmi, S.N. (2010) Oman Global School-Based Student Health Survey. GSHS Country Report, CDC and World Health Organization.
http://www.who.int/chp/gshs/Oman_GSHS_Country_Report.pdf
[19] Serhan, N. (2010) Adolescent Health Risk Screening in Primary Care Setting. Bahrain Medical Bulletin, 32(3).
[20] Center for Disease Control and Prevention (2006) Nutrition for Everyone: Fruits and Vegetables. CDC, Georgia, Atlanta.
http://www.cdc.gov/nccdphp/dnpa/nutrition/nutrition_for_everyone/fruits_vegetables/index.htm
[21] Ma, D. and Jones, G. (2004) Soft Drink and Milk Consumption, Physical Activity, Bone Mass, and Upper Limb Fractures in Children: A Population-Based Case-Control Study. Calcified Tissue International, 75, 286-291.
http://dx.doi.org/10.1007/s00223-004-0274-y
[22] Libuda, L., Alexy, U., Buyken, A.E., Sichert-Hellert, W., Stehle, P. and Kersting, M. (2009) Consumption of Sugar- Sweetened Beverages and Its Association with Nutrient Intakes and Diet Quality in German Children and Adolescents. British Journal of Nutrition, 101, 1549-1557.
http://dx.doi.org/10.1017/S0007114508094671
[23] Libuda, L., Alexy, U., Remer, T., Stehle, P., Schoenau, E. and Kersting, M. (2008) Association between Long-Term Consumption of Soft Drinks and Variables of Bone Modeling and Remodeling in a Sample of Healthy German Children and Adolescents. American Journal of Clinical Nutrition, 88, 1670-1677.
http://dx.doi.org/10.3945/ajcn.2008.26414
[24] McGartland, C., Robson, P.J., Murray, L., Cran, G., Savage, M.J., Watkins, D., et al. (2003) Carbonated Soft Drink Consumption and Bone Mineral Density in Adolescence: The Northern Ireland Young Hearts Project. Journal of Bone and Mineral Research, 18, 1563-1569.
http://dx.doi.org/10.1359/jbmr.2003.18.9.1563
[25] U.S. Department of Health and Human Services (2008) Physical Activity Guidelines Advisory Committee Report. U.S. Department of Health and Human Services, Washington DC.
[26] Naser, N. (2008) Yemen Global School-Based Student Health Survey. GSHS Country Report, CDC and World Health Organization.
http://www.cdc.gov/gshs/countries/eastmediter/yemen.htm
[27] Jabber, A. (2006) Morocco Global School-Based Student Health Survey. GSHS Country Report, CDC and World Health Organization.
http://www.cdc.gov/gshs/countries/eastmediter/morocco.htm
[28] DiNapoli, P.P. (2009) Early Initiation of Tobacco Use in Adolescent Girls: Key Sociostructural Influences. Applied Nursing Research, 22, 126-132.
http://dx.doi.org/10.1016/j.apnr.2007.07.001
[29] Nilsson, M., Weinehall, L., Bergstrom, E., Stenlund, H. and Janlert, U. (2009) Adolescent’s Perceptions and Expectations of Parental Action on Children’s Smoking and Snus Use; National Cross Sectional Data from Three Decades. BMC Public Health, 9, 74.
http://dx.doi.org/10.1186/1471-2458-9-74
[30] Islam, S.M. and Johnson, C.A. (2005) Influence of Known Psychosocial Smoking Risk Factors on Egyptian Adolescents’ Cigarette Smoking Behavior. Health Promotion International, 20, 135-145.
http://dx.doi.org/10.1093/heapro/dah604
[31] Abdalla, A.M., Al Kaaba, A.F., Saeed, A.A., Abdulrahman, B.M. and Raat, H. (2007) Gender Differences in Smoking Behavior among Adolescents in Saudi Arabia. Saudi Medical Journal, 28, 1102-1208.
[32] El Mhamdi, S., Wolfcarius-Khiari, G., Mhalla, S., Ben Salem, K. and Soltani, S.M. (2011) Prevalence and Predictors of Smoking among Adolescent Schoolchildren in Monastir, Tunisia. Eastern Mediterranean Health Journal, 17, 523- 528.                                                                                                 eww150115lx
Advertisements

Advances in Transgenic Vegetable and Fruit Breeding

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52421#.VJdtZcCAM4

ABSTRACT

Vegetables and fruits are grown worldwide and play an important role in human diets because they provide vitamins, minerals, dietary fiber, and phytochemicals. Vegetables and fruits are also associated with improvement of gastrointestinal health, good vision, and reduced risk of heart disease, stroke, chronic diseases such as diabetes, and some forms of cancer. Vegetable and fruit production suffers from many biotic stresses caused by pathogens, pests, and weeds and requires high amounts of plant protection products per hectare. United States vegetables farmers are benefiting from growing transgenic squash cultivars resistant to Zucchini yellow mosaic virus, Watermelon mosaic virus, and Cucumber mosaic virus, which were deregulated and commercialized since 1996. Bt-sweet corn has also proven effective for control of some lepidopteran species and continues to be accepted in the fresh market in the USA, and Bt-fresh-market sweet corn hybrids are released almost every year. Likewise, transgenic Bt-eggplant bred to reduce pesticide use is now grown by farmers in Bangladesh. Transgenic papaya cultivars carrying the coat-protein gene provide effective protection against Papaya ring spot virus elsewhere. The transgenic “Honey Sweet” plum cultivar provides an interesting germplasm source for Plum pox virus control. Enhanced host plant resistance to Xanthomonas campestris pv. musacearum, which causes the devastating banana Xanthomonas wilt in the Great Lakes Region of Africa, was achieved by plant genetic engineering. There are other vegetable and fruit crops in the pipeline that have been genetically modified to enhance their host plant resistance to insects and plant pathogens, to show herbicide tolerance, and to improve features such as slow ripening that extends the shelf-life of the produce. Consumers could benefit further from eating more nutritious transgenic vegetables and fruits. Transgenic plant breeding therefore provides genetically enhanced seed embedded technology that contributes to integrated pest management in horticulture by reducing pesticide sprays as well as improving food safety by minimizing pesticide residues. Furthermore, herbicide-tolerant transgenic crops can help reducing plough in fields, thereby saving fuel because of less tractor use, which also protects the structure of the soil by reducing its erosion. Transgenic vegetable and fruit crops could make important contributions to sustainable vegetable production and for more nutritious and healthy food. Countries vary, however, in their market standards of acceptance of transgenic crops. Biotechnology products will be successful if clear advantages and safety are demonstrated to both growers and consumers.

Cite this paper

Silva Dias, J. and Ortiz, R. (2014) Advances in Transgenic Vegetable and Fruit Breeding. Agricultural Sciences, 5, 1448-1467. doi: 10.4236/as.2014.514156.

References

[1] Dias, J.S. and Ryder, E. (2011) World Vegetable Industry: Production, Breeding, Trends. Horticultural Reviews, 38, 299-356.
[2] Keatinge, J.D.H., Waliyar, F., Jammadass, R.H., Moustafa, A., Andrade, M., Drechsel, P., Hughes, J.A., Kardivel, P. and Luther. K. (2010) Re-Learning Old Lessons for the Future of Food: By Bread Alone No Longer—Diversifying Diets with Fruit and Vegetables. Crop Science, 50, S51-S62.
http://dx.doi.org/10.2135/cropsci2009.09.0528
[3] Kays, S.J. and Dias J.S. (1995) Common Names of Commercially Cultivated Vegetables of the World in 15 Languages. Economic Botany, 49, 115-152. http://dx.doi.org/10.1007/BF02862917
[4] Kays, S.J. (2011) Cultivated Vegetables of the World: A Multilingual Onomasticon. Wageningen Academic Publishers, Wageningen. http://dx.doi.org/10.3920/978-90-8686-720-2
[5] Krattinger, A. (1998) The Importance of Ag-Biotech to Global Prosperity. ISAAA Briefs No. 6, The International Service for the Acquisition of Agri-biotech Applications, Ithaca, NY, 11.
[6] Pimentel, D. (1997) Techniques for Reducing Pesticide Use. Economic and Environmental Benefits. Wiley, New York.
[7] Dias, J.S. and Ortiz, R. (2012) Transgenic Vegetable Crops: Progress, Potentials and Prospects. Plant Breeding Reviews, 35, 151-246.
[8] Asian Vegetable Research and Development Center (2001) Fact Sheet: Eggplant Fruit and Shoot Borer. AVRDC, Tainan.
[9] Choudhary, B. and Gaur, K. (2009) The Development and Regulation of Bt Brinjal in India. ISAAA Brief No. 38, International Service for Acquisition of Agri-Biotech Applications, Ithaca, NY.
[10] Siritunga, D. and Sayre, R.T. (2003) Generation of Cyanogen-Free Transgenic Cassava. Planta, 217, 367-373. http://dx.doi.org/10.1007/s00425-003-1005-8
[11] Siritunga, D. and Sayre, R.T. (2004) Engineering Cyanogen Synthesis and Turnover in Cassava (Manihot esculenta). Plant Molecular Biology, 56, 661-669. http://dx.doi.org/10.1007/s11103-004-3415-9
[12] Siritunga, D., Arias-Garzon, D., White, W. and Sayre, R.T. (2004) Over-Expression of Hydroxynitrile Lyase in Transgenic Cassava Roots Accelerates Cyanogenesis and Food Detoxification. Plant Biotechnology Journal, 2, 37-43. http://dx.doi.org/10.1046/j.1467-7652.2003.00047.x
[13] Kramer, M.G. and Redenbaugh, K. (1994) Commercialization of a Tomato with an Antisense Polygalacturonase Gene: The FLAVR SAVR(tm) Tomato Story. Euphytica, 79, 293-297.
http://dx.doi.org/10.1007/BF00022530
[14] Hamilton, A., Lycett, G. and Grierson, D. (1990) Antisense Gene That Inhibits Synthesis of the Hormone Ethylene in Transgenic Plants. Nature, 346, 284-287. http://dx.doi.org/10.1038/346284a0
[15] Oeller, P.W., Wong, L.M., Taylor, L.P., Pike, D.A. and Theologis, A. (1991) Reversible Inhibition of Tomato Fruit Senescence by Antisense 1-Aminocyclopropane-1-Carboxylate Synthase. Science, 254, 437-439. http://dx.doi.org/10.1126/science.1925603
[16] Klee, H.J., Hayford, M.B., Kretzmer, K.A., Barry, G.F. and Kishore, G.M. (1991) Control of Ethylene Synthesis by Expression of a Bacterial Enzyme in Transgenic Tomato Plants. Plant Cell, 3, 1187-1193.
http://dx.doi.org/10.1105/tpc.3.11.1187
[17] Good, X., Kellogg, J.A., Wagoner, W., Langhoff, D., Matsumura, W. and Bestwick, R.K. (1994) Reduced Ethylene Synthesis by Transgenic Tomatoes Expressing S-Adenosylmethionine Hydrolase. Plant Molecular Biology, 26, 781-790. http://dx.doi.org/10.1007/BF00028848
[18] Gianesi, L. and Carpenter, J. (1999) Agricultural Biotechnology: Insect Control Benefits. National Center for Food and Agricultural Policy, Washington DC.
[19] Qaim, M. (1998) Transgenic Virus Resistance Potatoes in Mexico: Potential Social Implications of North-South Biotechnology Transfer. ISAAA Briefing No. 7, International Service for Acquisition of Agri-Biotech Applications, Ithaca, NY.
[20] Thomas, P.E., Kaniewski, W.K. and Lawson, E.C. (1997) Reduced Field Spread of Potato Virus in Potatoes Transformed with the Potato Leafroll Virus Coat Protein Gene. Plant Disease, 81, 1447-1453. http://dx.doi.org/10.1094/PDIS.1997.81.12.1447
[21] Thornton, M. (2003) The Rise and Fall of New Leaf Potatoes. NABC Report, 15, 235-243.
[22] Grafius, E.J. and Douches, D.S. (2008) The Present and Future Role of Insect-Resistant Genetically Modified Potato Cultivars in IPM. In: Romeis, J., Shelton, A.M. and Kennedy, G.G., Eds., Integration of Insect-Resistant Genetically Modified Crops within IPM Programs, Springer Science + Business Media B.V., Dordrecht, 195-221. http://dx.doi.org/10.1007/978-1-4020-8373-0_7
[23] Guenthner, J.F. (2002) Consumer Acceptance of Genetically Modified Potatoes. American Journal of Potato Research, 79, 309-316. http://dx.doi.org/10.1007/BF02870167
[24] Visser, D. (2005) Guide to Potato Pests and Their Natural Enemies in South Africa. ARC-Roodeplaat Vegetable and Ornamental Plant Institute, Pretoria.
[25] Douches, D.S. and Grafius, E.J. (2005) Transformation for Insect Resistance. In: Razdan, M.K. and Mattoo, A.K., Eds., Genetic Improvement of Solanaceous Crops. Vol. 1: Potato, Science Publishers Inc., Enfield, NH, Plymouth, UK, 235- 266.
[26] Douches, D.S., Pett, W., Santos, F., Coombs, J., Grafius, E., Li, W., Metry, E.A., Nasr El-Din, T. and Madkour, M. (2004) Field and Storage Testing Bt Potatoes for Resistance to Potato Tuberworm (Lepidoptera: Gelichiidae). Journal of Economic Entomology, 97, 1425-1431.
http://dx.doi.org/10.1603/0022-0493-97.4.1425
[27] Douches, D.S., Brink, J.A., Quemada, H., Pett, W., Koch, M., Visser, D., Maredia, K. and Zarka, K. (2007) Commercialization of Potato Tuber Worm Resistant Potatoes in South Africa. Proceedings of 6th World Potato Congress, Boise, 20-26 August 2006.
http://www.potatocongress.org/congress/proceedings-2006/
[28] Douches, D.S., Brink, J.A., Quemada, H., Pett, W., Koch, M., Visser, D., Maredia, K. and Zarka, K. (2008) Commercialization of Potato Tuber Moth Resistant Potatoes in South Africa. In: Kroschel, J. and Lacey, L.A., Eds., Integrated Pest Management for the Potato Tuber Moth, Phthorimaea operculella (Zeller)—Potato Pest of Global Importance, Tropical Agriculture 20, Advances in Crop Research 10, Margraf Publishers GmbH, Weikersheim, 139-147.
[29] Cooper, S.G., Douches, D.S., Zarkas, K. and Grafius, E.J. (2009) Enhanced Resistance to Control Potato Tuberworm by Combining Engineered Resistance, Avidin, and Natural Resistance Derived from Solanum chacoense. American Journal of Potato Research, 86, 24-30.
http://dx.doi.org/10.1007/s12230-008-9057-8
[30] Celis, B.C., Scurrah, M., Cowgill, S., Chumbiauca, S., Green, J., Franco, J., Main, G., Kiezebrink, D., Visser, R. and Atkinson, H.J. (2004) Environmental Biosafety and Transgenic Potato in a Centre of This Crop’s Diversity. Nature, 432, 222-225. http://dx.doi.org/10.1038/nature03048
[31] Scurrah, M., Celis-Gamboa, C., Chumbiauca, S., Salas, A. and Visser, R.G.F. (2008) Hybridization between Wild and Cultivated Potato Species in the Peruvian Andes and Biosafety Implications for Deployment of GM Potatoes. Euphytica, 164, 881-892. http://dx.doi.org/10.1007/s10681-007-9641-x
[32] ISAAA (2008) Bt Brinjal in India. Pocket K 35. International Service for Acquisition of Agri-Biotech Applications, Ithaca, NY.
[33] Krishna, V.V. and Qaim, M. (2008) Potential Impacts of Bt Eggplant on Farmers’ Health in India. Agricultural Economics, 38, 167-180. http://dx.doi.org/10.1111/j.1574-0862.2008.00290.x
[34] Krishna, V.V. and Qaim, M. (2007) Estimating the Adoption of Bt Eggplant in India: Who Benefits from Public-Private Partnership? Food Policy, 32, 523-543.
http://dx.doi.org/10.1016/j.foodpol.2006.11.002
[35] Kolady, D. and Lesser, W. (2008) Can Owners Afford Humanitarian Donations in Agbiotech—The Case of Genetically Engineered Eggplant in India. Electronic Journal of Biotechnology, 11, 5.
http://www.ejbiotechnology.info/content/vol11/issue2/full/5/
[36] Kameswara-Rao, C. (2010) Moratorium on Bt Brinjal: A Review of the Order of the Minister of Environment and Forests, Government of India. Foundation for Biotechnology Awareness and Education, Bangalore.
[37] Kinetz, E. (2010) India Halts Genetically Modified Eggplant Release. Greenbio.
http://seattletimes.com/html/businesstechnology/2011022982_apasindiagmfood.html
[38] Jayaraman, K. (2010) Bt Brinjal Splits Indian Cabinet. Nature Biotechnology, 28, 296.
http://dx.doi.org/10.1038/nbt0410-296
[39] Choudhary, B., Nasiruddin, K.M. and Gaur, K. (2014) The Status of Commercialized Bt Brinjal in Bangladesh. ISAAA Brief No. 47, International Service for Acquisition of Agri-Biotech Applications, Ithaca, NY.
[40] Gianessi, L.P., Silvers, C.S., Sankula, S. and Carpenter, J.E. (2002) Virus Resistant Squash. In: Plant Biotechnology: Current and Potential Impact for Improving Pest Management in US Agriculture. An Analysis of 40 Case Studies, National Center for Food and Agriculture Policy, Washington, DC, 75.
[41] Gaba, V., Zelcer, A. and Gal-On, A. (2004) Cucurbit Biotechnology—The Importance of Virus Resistance. In Vitro Cellular & Developmental Biology-Plant, 40, 346-358.
http://dx.doi.org/10.1079/IVP2004554
[42] Ochoa, J.P.A., Dainello, F., Pike, L.M. and Drews, D. (1995) Field Performance Comparison of Two Transgenic Summer Squash Hybrids to Their Parental Hybrid Lineage. HortScience, 30, 492-493.
[43] Clough, G.H. and Hamm, P.B. (1995) Coat Protein Transgenic Resistance to Watermelon Mosaic and Zucchini Yellow Mosaic Virus in Squash and Cantaloupe. Plant Disease, 79, 107-1109. http://dx.doi.org/10.1094/PD-79-1107
[44] Fuchs, M. and Gonsalves, D. (1995) Resistance of Transgenic Squash Pavo ZW-20 Expressing the Coat Protein Genes of Zucchini Yellow Mosaic Virus and Watermelon Mosaic Virus 2 to Mixed Infections by Both Potyviruses. BioTechnology, 13, 1466-1473.
http://dx.doi.org/10.1038/nbt1295-1466
[45] Tricoli, D.M., Carney, K.J., Russell, P.F., McMaster, J.R., Groff, D.W., Hadden, K.C., Himmel, P.T., Hubbard, J.P., Boeshore, M.L. and Quemada H.D. (1995) Field Evaluation of Transgenic Squash Containing Single or Multiple Virus Coat Protein Gene Constructs for Resistance to Cucumber Mosaic Virus, Watermelon Mosaic Virus 2, and Zucchini Yellow Mosaic Virus. BioTechnology, 13, 1458-1465. http://dx.doi.org/10.1038/nbt1295-1458
[46] Fuchs, M., Tricoli, D.M., McMaster, J.R., Carney, K.J., Schesser, M., McFerson, J.R. and Gonsalves, D. (1998) Comparative Virus Resistance and Fruit Yield of Transgenic Squash with Single and Multiple Coat Protein Genes. Plant Disease, 82, 1350-1356. http://dx.doi.org/10.1094/PDIS.1998.82.12.1350
[47] Schultheis, J.R. and Walters, S.A. (1998) Yield and Virus Resistance of Summer Squash Cultivars and Breeding Lines in North Carolina. HortScience, 8, 31-39.
[48] Shankula, S. (2006) Quantification of the Impacts on US Agriculture of Biotechnology-Derived Crops Planted in 2005. http://www.ncfap.org/
[49] Lynch, R., Wiseman, B., Sumner, H., Plaisted, D. and Warnick D. (1999) Management of Corn Earworm and Fall Armyworm (Lepidoptera: Noctuidae) Injury on a Sweet Corn Hybrid Expressing a cryIA (b) Gene. Journal of Economic Entomology, 92, 1217-1222.
[50] Musser, F.R. and Shelton, A.M. (2003) Bt Sweet Corn and Selective Insecticides: Their Impacts on Sweet Corn Pests and Predators. Journal of Economic Entomology, 96, 71-80.
http://dx.doi.org/10.1603/0022-0493-96.1.71
[51] Burkness, E.C., Hutchison, W.D., Bolin, P.C., Bartels, D.W., Warnock, D.F. and Davis, D.W. (2001) Field Efficacy of Sweet Corn Hybrids Expressing a Bacillus thuringiensis Toxin for Management of Ostrinia nubilalis (Lepidoptera: Crambidae) and Helicoverpa zea (Lepidoptera: Noctuidae). Journal of Economic Entomology, 94, 197-203. http://dx.doi.org/10.1603/0022-0493-94.1.197
[52] Hassel, R. and Shepard, B.M. (2002) Insect Population on Bacillus thuringiensis Transgenic Sweet Corn. Journal of Entomological Science, 37, 285-292.
[53] Speese, I.J., Kuhar, T.P., Bratsch, A.D., Nault, B.A., Barlow, V.M., Cordero, R.J. and Shen, Z. (2005) Efficacy and Economics of Fresh-Market Bt Transgenic Sweet Corn in Virginia. Crop Protection, 24, 57-64. http://dx.doi.org/10.1016/j.cropro.2004.06.008
[54] Rose, R. and Dively, G.P. (2007) Effects of Insecticide-Treated and Lepidopteran-Active Bt Transgenic Sweet Corn on the Abundance and Diversity of Arthropods. Environmental Entomology, 36, 1254-1268. http://dx.doi.org/10.1603/0046-225X(2007)36%5B1254:EOIALB%5D2.0.CO;2
[55] NASS (2007) Vegetables: 2006 Annual Summary. National Agricultural Statistics Service, Washington DC.
[56] Headrick, J. (2011) The Buzz on Sweet Corn. http://monsantoblog.com/2011/11/08/the-buzz-on-sweet-corn/
[57] Stuart, D. (2011) Biotech Sweet Corn Varieties Deliver Sustainable Benefits to Growers. Monsanto Newsroom, 8/8/2011.
http://www.monsanto.com/newsviews/Pages/gmo-sweet-corn-variety-coming-soon.aspx
[58] Cordero, R., Morjan, W., Fabellar, A., Harty, J. and Subere, C.V. (2011) Potential Impact of Biotech Sweet Corn (MON 89034 × MON 88017) on Pest Management in the Southern US. Proceedings of the 2011 ASHS Annual Conference, Waikoloa, 25-28 September 2011, S288.
http://ashs.confex.com/ashs/2011/webprogram/Paper5706.html
[59] Lius, S., Manshardt, R.M., Fitch, M.M.M., Slightom, J.L., Sanford, J.C. and Gonsalves, D. (1997) Pathogen-Derived Resistance Provides Papaya with Effective Protection against Papaya Ringspot Virus. Molecular Breeding, 3, 161-168.
http://dx.doi.org/10.1023/A:1009614508659
[60] Susuki, Y.I., Tripathi, S. and Gonsalves, D. (2007) Virus-Resistant Transgenic Papaya: Commercial Development and Regulatory and Environmental Issues. In: Punka, Z.K., De Boer, S.H. and Sanfa?on, H., Eds., Biotechnology and Plant Disease Mmanagement, CAB International, Wallinford, 436-461.
[61] Shelton, A.M. and Badenes-Perez, F.R. (2006) Concept and Applications of Trap Cropping in Pest Management. Annual Review of Entomology, 51, 285-308.
http://dx.doi.org/10.1146/annurev.ento.51.110104.150959
[62] Fuchs, M. and Gonsalves, D. (2007) Safety of Virus-Resistant Transgenic Plants Two Decades after Their Introduction: Lessons from Realistic Field Risk Assessment Studies. Annual Review of Phytopathology, 45, 173-202.
http://dx.doi.org/10.1146/annurev.phyto.45.062806.094434
[63] Ming, R., Hou, S., Feng, Y., Yu, Q., Dionne-Laporte, A., Saw, J.H., Senin, P., Wang, W., Ly, B.V., Lewis, K.L.T., Salzberg, S.L., Feng, L., Jones, M.R., Skelton1, R.L., Murray, J.E., Chen, C., Qian, W., Shen, J., Du, P., Eustice1, M., Tong, E., Tang, H., Lyons, E., Paull, R.E., Michael, T.P., Wall, K., Rice, D.W., Albert, H., Wang, M.L., Zhu, Y.J., Schatz, M., Nagarajan, N., Acob, R.A., Guan, P., Blas, A., Wai1, C.M., Ackerman, C.M., Ren, Y., Liu, C., Wang, J., Wang, J., Na, J.K., Shakirov, E.V., Haas, B., Thimmapuram, J., Nelson, D., Wang, X., Bowers, J.E., Gschwend, A.R., Delcher, A.L., Singh, R., Suzuki, J.Y., Tripathi, S., Neupane, K., Wei, H., Irikura, B., Paidi, M., Jiang, N., Zhang, W., Presting, G., Windsor, A., Navajas-Pérez, R.N., Torres, M.J., Feltus, F.A., Porter, B., Li, Y., Burroughs, A.M., Luo, M.C., Liu, L., Christopher, D.A., Mount, S.M., Moore, P.H., Sugimura, T., Jiang, J., Schuler, M.A., Friedman, V., Mitchell-Olds, T., Shippen, D.E., de Pamphilis, C.W., Palmer, J.D., Freeling, M., Paterson, A.H., Gonsalves, D., Wang, L. and Alam, M. (2008) The Draft Genome of the Transgenic Tropical Fruit Tree Papaya (Carica papaya Linnaeus). Nature, 452, 991-996. http://dx.doi.org/10.1038/nature06856
[64] Scorza, R., Callahan, A., Dardick, C., Cambra, M., Polak, J., Ravelonandro, M., Zagrai, I. and Malinowski, T. (1998) “Honey Sweet”—A Transgenic Plum Pox Virus Resistant Plum—From Laboratory and Experimental Field Plots to Regulatory Approval. Acta Horticulturae, 974, 57-63.
[65] Ravelonandro, M., Monsion, M., Teycheney, P.Y., Delbos, R. and Dunez, J. (1992) Construction of a Chimeric Viral Gene Expressing Plum Pox Virus Coat Protein. Gene, 120, 167-173. http://dx.doi.org/10.1016/0378-1119(92)90090-C
[66] Hily, J.-M., Scorza, R., Malinowski, T., Zawadzka, B. and Ravelonandro, M. (2004) Stability of Gene Silencing-Based Resistance to Plum Pox Virus in Transgenic Plum (Prunus domestica L.) under Field Conditions. Transgenic Research, 13, 427-436. http://dx.doi.org/10.1007/s11248-004-8702-3
[67] Malinowski, T., Cambra, M., Capote, N., Zawadzka, B., Gorris, M.T., Scorza, R. and Ravelonandro, M. (2006) Field Trials of Plum Clones Transformed with the Plum Pox Virus Coat Protein (PPV-CP) Gene. Plant Disease, 90, 1012- 1018. http://dx.doi.org/10.1094/PD-90-1012
[68] Polak, J., Pivalova, J., Kundu, J.K., Jokes, M., Scorza, R. and Ravelonandro, M. (2008) Behavior of Transgenic Plum Pox Virus-Resistant Prunus domestica L. Clone C5 Grown in the Open Field under a High and Permanent Infection Pressure of the PPV-Rec Strain. Journal of Plant Pathology, 90, S1.33-S1.36.
[69] Ravelonandro, M., Scorza, R., Renaud, R. and Salesses, G. (1998) Transgenic Plums Resistant to Plum Pox Virus Infection and Preliminary Results of Cross-Hybridization. Acta Horticulturae, 478, 67-71.
[70] Scorza, R., Callahan, A., Levy, L., Damsteegt, V. and Ravelonandro, M. (1998) Transferring Potyvirus Coat Protein Genes through Hybridization of Transgenic Plants to Produce Plum Pox Virus Resistant Plums (Prunus domestica L.). Acta Horticulturae, 472, 421-425.
[71] Food and Agricultural Organization (2009) Agriculture Data. FAO, Rome. http://faostat.fao.org
[72] Tripathi, L., Mwaka, H., Tripathi, J.N. and Tushemereirwe, W. (2010) Expression of Sweet Pepper Hrap Gene in Banana Enhances Resistance to Xanthomonas campestris pv musacearum. Molecular Plant Pathology, 11, 721-731.
[73] Tripathi, L., Tripathi, J.N., Kiggundu, A., Korie, S., Shotkoski, F. and Tushemereirwe, W.K. (2014) Field Trial of Xanthomonas Wilt Disease-Resistant Bananas in East Africa. Nature Biotechnology, 32, 868-870. http://dx.doi.org/10.1038/nbt.3007
[74] Tripathi, L. (2012) Transgenics in Crop Improvement Research at IITA. IITA Research for Development (R4D) Review, 8, 58-60.
[75] Romer, S., Fraser, P.D., Kiano, J.W., Shipton, C.A., Misawa, N., Schuch, W. and Bramley, P.M. (2000) Elevation of the Provitamin A Content of Transgenic Tomato Plants. Nature Biotechnology, 18, 666-669. http://dx.doi.org/10.1038/76523
[76] Fraser, P.D., Romer, S., Shipton, C.A., Mills, P.B., Kiano, K.W., Misawa, N., Drake, R.G., Schuch, W. and Bramley, P.M. (2002) Evaluation of Transgenic Tomato Plants Expressing an Additional Phytoene Synthase in a Fruit Specific Manner. Proceedings of the National Academy of Sciences of the United States of America, 99, 1092-1097.
http://dx.doi.org/10.1073/pnas.241374598
[77] Rosati, C., Aquilani, R., Dharmapuri, S., Pallara, P., Marusic, C., Tavazza, R., Bouvier, F., Camara, B. and Giuliano, G. (2000) Metabolic Engineering of Beta-Carotene and Lycopene Content in Tomato Fruit. Plant Journal, 24, 413-419. http://dx.doi.org/10.1046/j.1365-313x.2000.00880.x
[78] Lu, S., van Eck, J., Zhou, X., Lopez, A.B., O’Halloran, D.M., Cosman, K.M., Conlin, B.J., Paolillo, D.J., Garvin, D.F., Vrebalov, J., Kochian, L.V., Kupper, H., Earle, E.D., Cao, J. and Li, L. (2006) The Cauliflower Or Gene Encodes a DnaJ Cysteine-Rich Domain-Containing Protein That Mediates High Levels of β-Carotene Accumulation. Plant Cell, 18, 3594-3605.
http://dx.doi.org/10.1105/tpc.106.046417
[79] Wahlroos, T., Susi, P., Solovyev, A., Dorokhov, Y., Morozov, S, Atabekov, J. and Korpela, T. (2004) Increase of Histidine Content in Brassica rapa Subsp. oleifera by Over-Expression of Histidine-Rich Fusion Proteins. Molecular Breeding, 14, 455-462. http://dx.doi.org/10.1007/s11032-004-0902-2
[80] Cho, E.A., Lee, C.A., Kim, Y.S., Baek, S.H., Reyes, B.G. and Yun, S.J. (2005) Expression of γ-Tocopherol Methyltransferase Transgene Improves Tocopherol Composition in Lettuce (Lactuca sativa L.). Molecules and Cells, 19, 16-22.
[81] Diaz de la Garza, R.I., Quinlivan, E.P., Klaus, S.M.J., Basset, G.J.C., Gregory, J.F. and Hanson, A.D. (2004) Folate Biofortification in Tomatoes by Engineering the Pteridine Branch of Folate Synthesis. Proceedings of the National Academy of Sciences of the United States of America, 101, 13720-13725. http://dx.doi.org/10.1073/pnas.0404208101
[82] Diaz de la Garza, R.I., Gregory, J.F. and Hanson, A.D. (2007) Folate Biofortification of Tomato Fruit. Proceedings of the National Academy of Sciences of the United States of America, 104, 4218-4222.
http://dx.doi.org/10.1073/pnas.0700409104
[83] Park, S., Kim, C.K., Pike, L.M., Smith, R.H. and Hirschi, K.D. (2004) Increased Calcium in Carrots by Expression of an Arabidopsis H+/Ca2+ Transporter. Molecular Breeding, 14, 275-282.
http://dx.doi.org/10.1023/B:MOLB.0000047773.20175.ae
[84] Morris, J., Hawthorne, K.M., Hotze, T., Abrams, S.A. and Hirschi, K.D. (2008) Nutritional Impact of Elevated Calcium Transport Activity in Carrots. Proceedings of the National Academy of Sciences of the United States of America, 105, 1431-1435. http://dx.doi.org/10.1073/pnas.0709005105
[85] Zuo, X., Zhang, Y., Wu, B., Chang, X. and Ru, B. (2002) Expression of the Mouse Metallothionein Mutant ββ-cDNA in the Lettuces (Lactuca sativa L.). Chinese Science Bulletin, 47, 558-562. http://dx.doi.org/10.1360/02tb9128
[86] Schijlen, E., Ric de Vos, C.H., Jonker, H., van den Broeck, H., Molthoff, J., van Tunen, A., Martens, S. and Bovy, A. (2006) Pathway Engineering for Healthy Phytochemicals Leading to the Production of Novel Flavonoids in Tomato Fruit. Plant Biotechnology Journal, 4, 433-444.
http://dx.doi.org/10.1111/j.1467-7652.2006.00192.x
[87] Liu, S., Hu, Y., Wang, X., Zhong, J. and Lin, Z. (2006) High Content of Resveratrol in Lettuce Transformed with a Stilbene Synthase Gene of Partenocissus henryana. Journal of Agricultural and Food Chemistry, 54, 8082-8085. http://dx.doi.org/10.1021/jf061462k
[88] Sparrow, P.A.C., Dale, P.J. and Irwin, J.A. (2004) The Use of Phenotypic Markers to Identify Brassica oleracea Genotypes for Routine High-Throughput Agrobacterium Mediated Transformation. Plant Cell Reports, 23, 64-70. http://dx.doi.org/10.1007/s00299-004-0818-7
[89] Braun, R.H., Morrison, S.C., Schwinn, K.E. and Christey, M.C. (2006) Agrobacterium Mediated Transformation of Brassica oleracea with the Lc Locus. International Association for Plant Tissue Culture and Biotechnology, Beijing, 115.
[90] Randle, W.M. and Lancaster, J.E. (2002) Sulphur Compounds in Alliums in Relation to Flavour Quality. In: Brewster, J.L., Ed., Onions and Other Vegetable Alliums, CAB International, Wallingford, Oxfordshire, 329-356.
[91] Lancaster, J.E. and Collin, H.A. (1981) Presence of Alliinase in Isolated Vacuoles and of Alkyl Cysteine Sulphoxides in the Cytoplasm of Bulbs of Onion (Allium cepa L.). Plant Science Letters, 22, 169-176.
http://dx.doi.org/10.1016/0304-4211(81)90139-5
[92] Almeida, D. (2006) Manual de Culturas Hortícolas. Vol. 1, Editorial Presen?a, Lisboa.
[93] Eady, C.C., Davis, S., Farrant, J., Reader, J. and Kenel, F. (2003) Agrobacterium tumefaciens Mediated Transformation and Regeneration of Herbicide Resistant Onion (Allium cepa) Plants. Annals of Applied Biology, 142, 213-217.
http://dx.doi.org/10.1111/j.1744-7348.2003.tb00243.x
[94] Sun, H.J., Cui, M.L., Ma, B. and Ezura, H. (2006) Functional Expression of the Taste Modifying Protein, Miraculin, in Transgenic Lettuce. FEBS Letters, 580, 620-626.
http://dx.doi.org/10.1016/j.febslet.2005.12.080
[95] Bartoszewski, G., Niedziela, A., Szwacka, M. and Niemirowicz-Szczytt, K. (2003) Modification of Tomato Taste in Transgenic Plants Carrying a Thaumatin Gene from Thaumatococcus daniellii BENT. Plant Breeding, 122, 347-351.
http://dx.doi.org/10.1046/j.1439-0523.2003.00864.x
[96] Li, H.Q., Sautter, C., Potrykus, I. and Pounti-Kaerlas, J. (1996) Genetic Transformation of Cassava (Manihot esculenta Crantz). Nature Biotechnology, 14, 736-740.
http://dx.doi.org/10.1038/nbt0696-736
[97] Raemakers, C.J.J.M., Sofiari, E., Taylor, N.J., Henshaw, G.G., Jacobsen, E. and Visser. R.G.F. (1996) Production of Transgenic Cassava Plants by Particle Bombardment Using Luciferase Activity as the Selection Marker. Molecular Breeding, 2, 339-349. http://dx.doi.org/10.1007/BF00437912
[98] Schopke, C., Taylor, N.J., Carcamo, R., Konan, N.K., Marmey, P., Henshaw, G.G., Beachy, R.N. and Fauquet, C.M. (1996) Regeneration of Transgenic Cassava Plants (Manihot esculenta Crantz) from Microbombarded Embryogenic Suspension Cultures. Nature Biotechnology, 14, 731-735. http://dx.doi.org/10.1038/nbt0696-731
[99] Siritunga, D. and Sayre, R.T. (2003) Generation of Cyanogen-Free Transgenic Cassava. Planta, 217, 367-373. http://dx.doi.org/10.1007/s00425-003-1005-8
[100] Siritunga, D. and Sayre, R.T. (2004) Engineering Cyanogen Synthesis and Turnover in Cassava (Manihot esculenta). Plant Molecular Biology, 56, 661-669.
http://dx.doi.org/10.1007/s11103-004-3415-9
[101] Siritunga, D., Arias-Garzon, D., White, W. and Sayre, R.T. (2004) Over-Expression of Hydroxynitrile Lyase in Transgenic Cassava Roots Accelerates Cyanogenesis and Food Detoxification. Plant Biotechnology Journal, 2, 37-43. http://dx.doi.org/10.1046/j.1467-7652.2003.00047.x
[102] Langridge, W.H.R. (2000) Edible Vaccines. Scientific American, 2000, 66-71.
[103] Pascual, D.W. (2007) Vaccines Are for Dinner. Proceedings of the National Academy of Sciences of the United States of America, 104, 10757-10758. http://dx.doi.org/10.1073/pnas.0704516104
[104] SunilKumar, G.B., Gananpathi, T.R. and Bapat, V.A. (2007) Production of Hepatitis B Surface Antigen in Recombinant Plant Systems. Biotechnology Progress, 23, 523-529.
[105] McGarvey, P.B., Hammond, J., Dienelt, M.M., Hooper, D.C., Fu, Z.F., Dietzschold, B., Koprowski, H. and Michaels, F.H. (1995) Expression of the Rabies Virus Glycoprotein in Transgenic Tomatoes. Bio/Technology, 13, 1484-1487. http://dx.doi.org/10.1038/nbt1295-1484
[106] Ma, Y., Zhang, J., Lin, S.Q. and Xia, N.S. (2001) Genetic Engineering Vaccines Produced by Transgenic Plants. Journal of Xiamen University, 40, 71-77.
[107] Chen, H.F., Chang, M.H., Chiang, B.L. and Jeng, S.T. (2006) Oral Immunization of Mice Using Transgenic Tomato Fruit Expressing VP1 Protein from Enterovirus 71. Vaccine, 24, 2944-2951.
http://dx.doi.org/10.1016/j.vaccine.2005.12.047
[108] Benner, G., Andrews, G., Byrne, W., Strachan, S., Sample, A. and Heath, D. (1999) Immune Response to Yersinia Outer Proteins and Other Yersinia pestis Antigens after Experimental Plague Infection in Mice. Infection and Immunity, 67, 1922-1928.
[109] Alvarez, M.L., Pinyerd, H.L., Crisantes, J.D., Rigano, M.M., Pinkhasov, J., Amanda, M., Walmsley, A.M., Masona, H.S. and Cardineau, G.A. (2006) Plant-Made Subunit Vaccine against Pneumonic and Bubonic Plague Is Orally Immunogenic in Mice. Vaccine, 24, 2477-2490.
http://dx.doi.org/10.1016/j.vaccine.2005.12.057
[110] Hoheisel, G.A. and Fleischer, S.J. (2007) Coccinelids, Aphids, and Pollen in Diversified Vegetable Fields with Transgenic and Isoline Cultivars. Journal of Insect Science, 7, 1-12.
http://dx.doi.org/10.1673/031.007.6101
[111] Leslie, T.W., Hoheisel, G.A., Biddinger, D.J., Rohr, J.R. and Fleisher S.J. (2007) Transgenes Sustain Epigeal Insect Biodiversity in Diversified Vegetable Farm Systems. Environmental Entomology, 36, 234-244.
http://dx.doi.org/10.1603/0046-225X(2007)36%5B234:TSEIBI%5D2.0.CO;2
[112] Krimsky, S. and Wrubel, R.P. (1996) Agricultural Biotechnology and the Environment. University of Illinois Press, Urbana.
[113] Wrubel, R.P. and Gressel, J. (1994) Are Herbicide Mixtures Useful for Delaying the Rapid Evolution of Resistance? A Case Study. Weed Technology, 8, 635-648.
[114] Brookes, G. and Barfoot, P. (2009) GM Crops: Global Socio-Economic and Environmental Impacts 1996-2007. PG Economics, Dorchester.
[115] Ortiz, R. and Smale, M. (2007) Transgenic Crops: Pro-Poor or Pro-Rich? Chronica Horticulturae, 47, 9-12.
[116] FAO (2000) FAO Statement on Biotechnology. Food and Agriculture Organization of the United Nations, Rome.
http://www.fao.org/biotech/stat.asp?lang=en
[117] Royal Society of London, the US National Academy of Sciences, the Brazilian Academy of Sciences, the Chinese Academy of Sciences, the Indian National Science Academy, the Mexican Academy of Sciences and the Third World Academy of Sciences (2000) Transgenic Plants and World Agriculture. National Academies Press, Washington DC.
[118] World Health Organization (2002) 20 Preguntas sobre los alimentos modificados genéticamente. WHO, Geneva. http://www.oei.es/salactsi/20oms.htm
[119] Chassy, B.M. (2002) Food Safety Evaluation of Crops Produced through Biotechnology. Journal of the American College of Nutrition, 21, S166-S173. http://dx.doi.org/10.1080/07315724.2002.10719261
[120] Society of Toxicology (2002) The Safety of Genetically Modified Foods Produced through Biotechnology. Society of Toxicology, Virginia. http://www.toxicology.org/ai/gm/GM_Food.asp
[121] British Medical Association (2004) Genetically Modified Foods and Health: A Second Interim Statement. British Medical Association, London. http://www.argenbio.org/adc/uploads/pdf/bma.pdf
[122] Union of the German Academies of Science and Humanities (2006) Are There Health Hazards for the Consumers from Eating Genetically Modified Foods? Interacademy Panel Initiative on Genetically Modified Organisms, Berlin.
http://www.ilsi.org/NorthAmerica/Documents/UGASH.pdf
[123] Federal Office of Consumer Protection and Food Safety (Germany) and Partners (2009) Long-Term Effects of Genetically Modified (GM) Crops on Health and the Environment (Including Biodiversity): Prioritisation of Potential Risks and Delimitation of Uncertainties. Federal Office of Consumer Protection of Food Safety, Berlin.
http://ec.europa.eu/food/food/biotechnology/reports_studies/docs/lt_effects_report_en.pdf
[124] Ortiz, R. (2011) Revisiting the Green Revolution: Seeking Innovations for a Changing World. Chronica Horticulturae, 51, 6-11. http://dx.doi.org/10.1016/j.scienta.2011.09.020
[125] Schouten, H.J., Krens, F.A. and Jacobsen, E. (2006) Cisgenic Plants Are Similar to Traditionally Bred Plants. EMBO Reports, 8, 750-753. http://dx.doi.org/10.1038/sj.embor.7400769
[126] Schouten, H.J., Krens, F.A. and Jacobsen, E. (2006) Do Cisgenic Plants Warrant Less Stringent Oversight? Nature Biotechnology, 24, 753. http://dx.doi.org/10.1038/nbt0706-753
[127] Eriksson, D., Stymne, S. and Schorring, J.K. (2014) The Slippery Slope of Cisgenesis. Nature Biotechnology, 32, 727. http://dx.doi.org/10.1038/nbt.2980
[128] Federoff, N.V. and Brown, N.M. (2004) Mendel in the Kitchen. A Scientist’s View of Genetically Modified Foods. Joseph Henry Press, Washington, DC.
[129] Bradford, K.J., Van Deynze, A., Gutterson, N., Parrott, W. and Strauss, S.H. (2005) Regulating Transgenic Crops Sensibly: Lessons from Plant Breeding, Biotechnology and Genomics. Nature Biotechnology, 23, 439-444. http://dx.doi.org/10.1038/nbt1084                                                                                        eww141222lx

Neoplastic-Like CELL Changes of Normal Fibroblast Cells Associated with Evolutionary Conserved Maternal and Paternal Genomic Autonomous Behavior (Gonomery)

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=49182#.VJJupcnQrzE

Author(s)

Kirsten H. Walen

Affiliation(s)

CROMOS, Richmond, CA, USA.

ABSTRACT

The present comparative review discusses conservation of early evolutionary, relic genetics in the genome of man, which determine two different mechanistic reductive division systems expressed by normal, human diploid cells. The divisions were orderly and segregated genomes reductively to near-diploid daughter cells, which showed gain of a proliferative advantage (GPA) over cells of origin. This fact of GPA expression is a fundamental requirement for initiation of tumorigenesis. The division systems were responses to a carcinogen-free induction system, consisting of short (1 – 3 days) exposures of young cells to nutritional deprivation of amino acid glutamine (AAD). In recovery growth (2 – 4 days) endo-tetra/ochtoploid cells and normal diploid metaphase cells demonstrated chromosomal reductive divisions to respectively heterozygous and homozygous altered daughter cells. Both division systems showed co-segregating whole complements, which for reduction of the diploid metaphases could only arise from gonomeric-based autonomous behavior of maternal and paternal (mat/pat) genomes. The timely associated appearance with these latter divisions was fast growing small-cells (1/2 volume-size reduced from normal diploidy), which became homozygous from haploid, genomic doubling. Both reductive divisions thus produced genome altered progeny cells with GPA, which was associated with pre-cancer-like cell-phenotypic changes. Since both “undesirable” reductive divisions expressed orderly division sequences, their genetic controls were assumed to be “old genetics”, evolutionarily conserved in the genome of man. Support for this idea was a search for evidential material in the evolutionary record from primeval time, when haploid organisms were established. The theory was that endopolyploid and gonomery-based reductive divisions relieved the early eukaryotic organisms from accidental, non-proliferative diploidy and polyploidy, bringing the organism back to vegetative haploid proliferation. Asexual cycles were common for maintenance of propagating haploid and diploid early unicellular eukaryotes. Reduction of accidental diploidy was referred to as “one-step meiosis” which meant gonomeric-based maternal and paternal genomic independent segregations. This interpretation was supported by exceptional chromosomal behaviors. However, multiple divisions expressing non-disjunction was the choice-explanation from evolutionists, which today is also suggested for the rarer LL-1 near haploid leukemia. These preserved non-mitotic mechanistic divisions systems are today witnessed in apomixes and parthenogenesis in many animal phyla. Thus, the indications are the modern genome of man harbors, relic-genetics from past “good” evolvements assuring “stable” proliferation of ancient, primitive eukaryotes, but with cancer-like effects for normal human cells.

KEYWORDS

Cytogenetics, Pathologic Cytology, Endomitosis, Division Skewedness, Pathological Mitosis, Metaphase Rosettes, Homozygous, LOH, Growth Pattern, Nutrition, Amino Acid

Cite this paper

Kirsten H. Walen (2014) Neoplastic-Like CELL Changes of Normal Fibroblast Cells Associated with Evolutionary Conserved Maternal and Paternal Genomic Autonomous Behavior (Gonomery). Journal of Cancer Therapy, 5, 860-877. doi: 10.4236/jct.2014.59094.

References

[1] Loewenstein, W.R. (2000) The Touchstone of Life. The Oxford University Press, New York.
[2] Lynch, M. (2006) The Origin of Eukaryotic Gene Structure. Molecular Biology and Evolution, 23, 450-468. http://dx.doi.org/10.1093/molbev/msj050
[3] Zimmer, C. (2008) Now: The Rest of the Genome. The New York Times.
[4] Solari, A.J. (2002) Primitive Forms of Meiosis: The Possible Evolution of Meiosis. Biocell, 26, 1-13.
[5] Wilkins, A.S. and Holliday, R. (2009) The Evolution of Meiosis from Mitosis. Genetics, 181, 3-12. http://dx.doi.org/10.1534/genetics.108.099762
[6] Egel, R. and Penny, D. (2008) On the Origin of Meiosis in Eukaryotes: Coevolution of Meiosis and Meiosis from Feeble Beginnings. Genome Dynamics and Stability, 3, 249-288.
http://dx.doi.org/10.1007/7050_2007_036
[7] Bernstein, H. and Bernstein, C. (2010) Evolutionary Origin of Recombination during Meiosis. BioScience, 60, 498-505. http://dx.doi.org/10.1525/bio.2010.60.7.5
[8] Raikov, I.B. (1982) The Protozoan Nucleus: Morphology and Evolution. Springer Verlag, Vienna and New York.
[9] Raikov, I.B. (1994) The Diversity of Forms of Mitosis in Protozoa: A Comparative Review. European Journal of Protistology, 30, 253-269. http://dx.doi.org/10.1016/S0932-4739(11)80072-6
[10] Walen, K.H. (2007) Bipolar Genome Reduction Division of Human Near-Senescent, Polyploid Fibroblast Cells. Cancer Genetics and Cytogenetics, 173, 43-50.
http://dx.doi.org/10.1016/j.cancergencyto.2006.09.013
[11] Walen, K.H. (2007) Origin of Diplochromosomal Polyploidy in Near-Senescent Fibroblast Cultures: Telomeres and Chromosomal Stability (CIN). Cell Biology International, 31, 1447-1455.
http://dx.doi.org/10.1016/j.cellbi.2007.06.015
[12] Walen, K.H. (2012) Genome Reversion Process of Endopolyploidy Confers Chromosome Instability on the Descendent Diploid Cells. Cell Biology International, 36, 137-145.
http://dx.doi.org/10.1042/CBI20110052
[13] Walen, K.H. (2013) Normal Human Cells Acquiring Proliferative Advantage to Hyperplasia-Like Growth-Morphology: Aberrant Progeny Cells Associated with Endopolyploid and Haploid Divisions. Cancer and Clinical Oncology, 2, 1-15.
[14] Walen, K.H. (2014) Haploidization of Human Diploid Metaphase Cells: Is This Genome Reductive Mechanism Operational in Near-Haploid Leukemia? Journal of Cancer Therapy, 5, 101-114.
http://dx.doi.org/10.4236/jct.2014.51013
[15] Hurst, L.D. and Nurse, P. (1991) A Note on the Evolution of Meiosis. Journal of Theoretical Biology, 150, 561-563. http://dx.doi.org/10.1016/S0022-5193(05)80447-3
[16] Kondrashov, A.S. (1994) Gradual Origin of Amphimixis by Natural Selection. In: Kirkpatrick, M., Ed., The Evolution of Haploid-Diploid Life Cycles, Vol. 25, 27-51.
[17] Haig, D. (1993) Alternatives to Meiosis: The Unusual Genetics of Red Algae, Mirosporidia and Others. Journal of Theoretical Biology, 163, 15-31. http://dx.doi.org/10.1006/jtbi.1993.1104
[18] Walen, K.H. (1965) Spatial Relationships in the Replication of Chromosomal DNA. Genetics, 51, 915-929.
[19] Kuhn, E.M. and Therman, E. (1986) Cytogenetics of Bloom’s Syndrome. Cancer Genetics and Cytogenetics, 22, 1-18. http://dx.doi.org/10.1016/0165-4608(86)90132-9
[20] Ohno, S. (1970) Evolution by Gene Duplication. Georg Allen and Unwin, London.
[21] Wolfe, K.H. (2001) Yesterday’s Polyploids and the Mystery of Diploidization. Nature Reviews Genetics, 2, 333-341. http://dx.doi.org/10.1038/35072009
[22] Barrett, M.T., Pritchard, D., Palanca-Wessels, C., Anderson, J., Reid, B.J. and Rabinovitch, P.S. (2003) Molecular Phenotype of Spontaneously Arising 4N (G2-tetraploid) Intermediates of Neoplastic Progression in Barrett’s Esophagus. Cancer Research, 63, 4211-4217.
[23] Steinbeck, R.G. (2004) Dysplasia in View of the Cell Cycle. European Journal of Histochemistry, 48, 203-211.
[24] Walen, K.H. (2009) Spindle Apparatus Uncoupling in Endo-Tetraploid Asymmetric Division of Stem and Non-Stem Cells. Cell Cycle, 8, 3234-3237. http://dx.doi.org/10.4161/cc.8.19.9570
[25] Walen, K.H. (2013) Senescence Arrest of Endopolyploid Cells Renders Senescence into One Mechanism for Positive Tumorigenesis. In: Hayat, M.A., Ed., Tumor Dormancy and Cellular Quiescence and Senescence, Vol. 1, Springer, Berlin, 215-226.
[26] Erenpreisa, J., Salmina, K., Huna, A., Kosmacek, E.A., Cragg, M.S., Ianzini, F. and Anisimov, A. (2011) Polyploid Tumor Cells Elicit Paradiploid Progeny through Depolyploidizing Divisions and Regulated Autophagic Degradation. Cell Biology International, 35, 687-695.
http://dx.doi.org/10.1042/CBI20100762
[27] Brito, D. and Rieder, C.L. (2006) Mitotic Checkpoint Slippage in Humans Occurs via Cyclin B Destruction in the Presence of an Active Checkpoint. Current Biology, 16, 1194-1200.
http://dx.doi.org/10.1016/j.cub.2006.04.043
[28] D’Amato, F. (1989) Polyploidy in Cell Differentiation. Caryologia, 42, 183-211.
http://dx.doi.org/10.1080/00087114.1989.10796966
[29] Lee, H.O., Davidson, J.M. and Duronio, R.J. (2009) Endoreplication: Polyploidy with a Purpose. Genes & Development, 23, 2461-2477. http://dx.doi.org/10.1101/gad.1829209
[30] Davoli, T. and De Lange, T. (2012) Telomere-Driven Tetraploidization Occurs in Human Cells Undergoing Crisis and Promotes Transformation of Mouse Cells. Cancer Cell, 21, 765-776.
http://dx.doi.org/10.1016/j.ccr.2012.03.044
[31] Fox, D.T. and Duronio, R.J. (2013) Endoreplication and Polyploidy: Insight into Development and Disease. Development, 140, 3-12. http://dx.doi.org/10.1242/dev.080531
[32] Becak, M.L., Becak, W. and Pereira, A. (2003) Somatic Pairing, Endomitosis and Chromosome Aberration in Snakes (Viperida and Colubridae). Anais da Academia Brasileira de Ciências, 75, 285-300. http://dx.doi.org/10.1590/S0001-37652003000300004
[33] Levan, A. and Hauschka, T.S. (1953) Endomitotic Reduplication Mechanisms in Ascites Tumors of the Mouse. Journal of the National Cancer Institute, 14, 1-43.
[34] Nawata, H., Kashino, G., Tano, K., Daino, K., Shimada, Y., Kugoh, H., Oshimura, M. and Watanabe, M. (2011) Dysregulation of Gene Expression in Artificial Human Trisomy Cells of Chromosome 8 Associated with Transformed Cell Phenotypes. PLoS One, 6, Article ID: e25319.
http://dx.doi.org/10.1371/journal.pone.0025319
[35] Davoli, T., Denchi, E.L. and De Lange, T. (2010) Persistent Telomere Damage Induces Bypass of Mitosis and Tetraploidy. Cell, 141, 81-93. http://dx.doi.org/10.1016/j.cell.2010.01.031
[36] Cleveland, L.R. (1947) The Origin and Evolution of Meiosis. Science, 105, 287-289.
http://dx.doi.org/10.1126/science.105.2724.287
[37] Cleveland, L.R. (1956) Brief Accounts of the Sexual Cycles of the Flagellates of Cryptoserus. Journal of Protozoology, 3, 161-180. http://dx.doi.org/10.1111/j.1550-7408.1956.tb02452.x
[38] Storckova, Z. and Pellman, D. (2004) From Polyploidy to Aneuploidy, Genomic Instability and Cancer. Nature Reviews Molecular Cell Biology, 5, 45-54. http://dx.doi.org/10.1038/nrm1276
[39] Storchova, Z. and Kuffer, C. (2008) The Consequences of Tetraploidy. Journal of Cell Science, 121, 3859-3866. http://dx.doi.org/10.1242/jcs.039537
[40] Schvartzman, J.M., Sotillo, R. and Benezra, R. (2010) Mitotic Chromosomal Instability and Cancer: Mouse Modeling of the Human Disease. Nature Reviews Cancer, 10, 102-115.
http://dx.doi.org/10.1038/nrc2781
[41] Ravid, K., Lu, J., Zimmet, J.M. and Jones, M.R. (2002) Roads to Polyploidy: The Megakaryocyte Example. Journal of Cellular Physiology, 190, 7-20. http://dx.doi.org/10.1002/jcp.10035
[42] Margulis, L., Enzien, M. and McKhann, H.I. (1990) Revival of Dobell’s “Chromidia” Hypothesis: Chromatin Bodies in Amoebomastigote Paratetramitus jugosus. Biological Bulletin, 178, 300-304. http://dx.doi.org/10.2307/1541832
[43] Edgar, B.A. and Orr-Weaver, T.I. (2001) Endoreplication Cell Cycles More for Less. Cell, 105, 297-306. http://dx.doi.org/10.1016/S0092-8674(01)00334-8
[44] Ganem, N.J. and Pellman, D. (2012) Linking Abnormal Mitosis to the Acquisition of DNA Damage. Journal of Cell Biology, 199, 871-881. http://dx.doi.org/10.1083/jcb.201210040
[45] Gondek, L.P., Tiu, R., O’Keefe, L., Sekeres, M.A., Theil, K.S. and Maciejewski, J.P. (2008) Chromosomal Lesions and Uniparental Disomy Detected by SNP Arrays in MDS, MDS/MPD and MDS Derived AML. Blood, 111, 1534-1542. http://dx.doi.org/10.1182/blood-2007-05-092304
[46] Nielaender, I., Martin-Subero, J.I., Wagner, F., Martinez-Climent, J.A. and Siebert, R. (2006) Partial Uniparental Disomy: A Recurrent Genetic Mechanism Alternative to Chromosomal Deletion in Malignant Lymphoma. Leukemia, 20, 904-905. http://dx.doi.org/10.1038/sj.leu.2404173
[47] Mollinedo, F. and Gajate, C. (2003) Microtubules, Microtubule-Interfering Agents and Apoptosis. Apoptosis, 8, 413-450. http://dx.doi.org/10.1023/A:1025513106330
[48] Tautvydas, K.J. (1976) Evidence for Chromosome Endoreduplication in Eudorina californica, a Colonic Alga. Differentiation, 5, 35-42. http://dx.doi.org/10.1111/j.1432-0436.1976.tb00889.x
[49] Enzien, M., McKhann, H.I. and Margulis, L. (1989) Ecology and Life History of an Amoebomastigote, Paratetramitus jugosus, from a Microbial Mat: New Evidence for Multiple Fission. Biological Bulletin, 177, 110-129. http://dx.doi.org/10.2307/1541839
[50] Walen, K.H. (2002) The Origin of Transformed Cells: Studies of Spontaneous and Induced Cell Transformation in Cell Cultures from Marsupials, a Snail and Human Amniocytes. Cancer Genetics and Cytogenetics, 133, 45-54. http://dx.doi.org/10.1016/S0165-4608(01)00572-6
[51] Walen, K.H. (2010) Mitosis Is Not the Only Distributor of Mutated Cells: Non-Mitotic Endopolyploid Cells Produce Reproductive Genome Reduced Cells. Cell Biology International, 34, 867-872.
http://dx.doi.org/10.1042/CBI20090502
[52] Grell, K.G. and Ruthmann, A. (1964) Uber die Karyologie des Radiolars Aulachanta scolymantha und Feinstruktur seiner Chromosomen. Chromosoma, 15, 185-211.
http://dx.doi.org/10.1007/BF00285729
[53] Saunders, W.S., Shuster, M., Huang, X., Gharaibe, B., Enyenihi, A.H., Petersen, J. and Gollin, S.M. (2000) Chromosomal Instability and Cytoskeleton Defects in Oral Cancer. Proceedings of the National Academy of Sciences of the United States of America, 97, 303-308.
http://dx.doi.org/10.1073/pnas.97.1.303
[54] Gonzalez-Robles, A., Cristobal-Ramos, A.R., Gonzalez-Lazaro, M., Omana-Molina, M. and Martinez-Palomo, A. (2009) Naegleria fowleri: Light and Electron Microscopy Study of Mitosis. Experimental Parasitology, 122, 212-217. http://dx.doi.org/10.1016/j.exppara.2009.03.016
[55] Brenner, S., Branch, A., Meredith, S. and Berns, M.W. (1977) The Absence of Centrioles from Spindle Poles of Rat Kangaroo PtK1 Cells Undergoing Meiotic-Like Reduction Division in Vitro. Journal of Cell Biology, 72, 368-379. http://dx.doi.org/10.1083/jcb.72.2.368
[56] Sherratt, D.J. (2003) Bacterial Chromosome Dynamics. Science, 301, 780-785.
http://dx.doi.org/10.1126/science.1084780
[57] Castagnetti, S., Oliferenko, S. and Nurse, P. (2010) Fission Yeast Cells Undergo Nuclear Division in the Absence of Spindle Microtubules. PLoS Biology, 8, Article ID: e1000512.
http://dx.doi.org/10.1371/journal.pbio.1000512
[58] Travis, J. (2007) Return of the Matrix. Science, 318, 1400-1401.
http://dx.doi.org/10.1126/science.318.5855.1400
[59] Johansen, K.M., Forer, A., Yao, C., Girton, J. and Johansen, J. (2011) Do Nuclear Envelope and Intranuclear Proteins Reorganize during Mitosis to form an Elastic, Hydrogel-Like Spindle Matrix? Chromosome Research, 19, 345-365. http://dx.doi.org/10.1007/s10577-011-9187-6
[60] Swanson, C.P. (1957) Cytology and Cytogenetics. Prentice-Hall, Inc., Englewood Cliffs, NJ, 526-532.
[61] Rach, E.M. and Wyngaard, G.A. (2008) Gonomery and Chromatin Diminution in Mesocyclops longisetus (Copepoda). Journal of Crustacean Biology, 28, 180-184. http://dx.doi.org/10.1651/07-2847R.1
[62] Leeb, M., Walker, R., Mansfield, B., Nichols, J., Smith, A. and Wutz, A. (2012) Germline Potential of Parthenogenic Haploid Mouse Embryonic Stem Cells. Development, 139, 3301-3305.
http://dx.doi.org/10.1242/dev.083675
[63] Sarto, G.E., Stubblefield, P.A., Lurain, J. and Therman, E. (1984) Mechanisms of Growth in Hydatidiform Moles. American Journal of Obstetrics & Gynecology, 148, 1014-1023.
http://dx.doi.org/10.1016/0002-9378(84)90545-3
[64] Kukita, Y., Miyatake, K., Stokowski, R., Hinds, D., Higasa, N., Wake, N., et al. (2013) Genome-Wide Definitive Haplotypes Determined Using a Collection of Complete Hydatidiform Moles. Genome Research, 15, 1511-1518. http://dx.doi.org/10.1101/gr.4371105
[65] Gerstein, A.C., Chun, H.J.E., Grant, A. and Otto, S.P. (2006) Genomic Convergence toward Diploidy in Saccharomyces cerevisiae. PLoS Genetics, 2, 1396-1401.
[66] Alabrudzinska, M., Skoneczny, M. and Skoneczna, A. (2011) Diploid-Specific Genome Stability Genes of S. cerevisiae: Genomic Screen Reveals Haploidization as an Escape from Persisting DNA Rearrangement Stress. PLoS One, 6, Article ID: e21124.
http://dx.doi.org/10.1371/annotation/77daccf9-9976-4d0e-b666-35a900cb2d17
[67] Nagele, R.G., Freeman, T., McMorrow, L. and Lee, H.Y. (1995) Precise Spatial Positioning of Chromosomes during Prometaphase: Evidence for Chromosomal Order. Science, 270, 1831-1835. http://dx.doi.org/10.1126/science.270.5243.1831
[68] Bolzer, A., Kreth, G., Solovei, I., Koehler, D., Saracoglu, K., Fauth, C., et al. (2005) Three-Dimensional Maps of All Chromosomes in Human Male Fibroblast Nuclei and Prometaphase Rosettes. PLoS Biology, 3, 826-842.
[69] Mayer, W., Smith, A., Fundele, R. and Haaf, T. (2000) Spatial Separation of Parental Genomes in Preimplantation Mouse Embryos. Journal of Cell Biology, 148, 629-634.
http://dx.doi.org/10.1083/jcb.148.4.629
[70] Costello, D.P. (1970) Identical Linear Order of Chromosomes in both Gametes of the Acoel Tubularian Polychoerus carmelensis: A Preliminary Note. Proceedings of the National Academy of Sciences of the United States of America, 67, 1951-1958. http://dx.doi.org/10.1073/pnas.67.4.1951
[71] Stern, C. (1958) The Nucleus and Somatic Cell Variation. Journal of Cellular and Comparative Physiology, 52, 1-34. http://dx.doi.org/10.1002/jcp.1030520404
[72] Huskins, C.L. and Cheng, K.C. (1950) Segregation and Reduction in Somatic Tissues. IV. Reductional Grouping Induced in Alliun cepa by Low Temperature. Journal of Heredity, 14, 13-18.
[73] Glass, E. (1957) Das Problem der Genomsonderung in den Mitosen unbehandelter Rattenlebern. Chromosoma, 8, 468-492. http://dx.doi.org/10.1007/BF01259515
[74] Glazko, T.T. (2004) Chromosome Subdividing to Haploid Sets in Diploid Metaphase Plates of Some Mammalian Species. In: Proceedings of 15th International Chromosome Conference, London, 5-10 September 2004, 63.
[75] Straight, A.F., Marshall, W.F., Sedat, J.W. and Murray, A.W. (1997) Mitosis in Living Budding Yeast: Anaphase A but No Metaphase. Science, 277, 574-578.
http://dx.doi.org/10.1126/science.277.5325.574
[76] Walen KH. (2011) Normal Human Cell Conversion to 3-D Cancer-Like Growth: Genome Damage, Endopolyploidy, Senescence Escape, and Cell Polarity Change/Loss. Journal of Cancer Therapy, 2, 181-189. http://dx.doi.org/10.4236/jct.2011.22023
[77] Zhang, S., Mercado-Uribe, I., Xing, Z., Sun, B., Kuang, J. and Liu, J. (2013) Generation of Cancer-Stem-Like Cells through the Formation of Polyploid Giant Cells. Oncogene, 33, 116-128.
[78] Renpreisa, J. and Cragg, M.S. (2007) Cancer: A Matter of Life Cycles. Cell Biology International, 31, 1507-1510. http://dx.doi.org/10.1016/j.cellbi.2007.08.013
[79] Wheatley, D.N. (2008) Growing Evidence of Repopulation of Regressed Tumors by the Division of Giant Cells. Cell Biology International, 32, 1029-1030. http://dx.doi.org/10.1016/j.cellbi.2008.06.001
[80] Shackney, S.E. and Shanky, T.V. (1995) Genetic and Phenotypic Heterogeneity of Human Malignancies: Finding Order in Chaos. Cytometry, 21, 2-5. http://dx.doi.org/10.1002/cyto.990210103
[81] Puig, P.E., Guilly, M.N., Bouchot, A., Droin, N., Cathelin, D., Bouyer, F., et al. (2008) Tumor Cell Can Escape DNA-Damaging Sisplatin through DNA Endoreduplication and Reversible Polyploidy. Cell Biology International, 32, 1031-1043. http://dx.doi.org/10.1016/j.cellbi.2008.04.021
[82] Mitelman, F. (1988) Catalog of Chromosome Aberrations in Cancer. Alan Liss, Inc., New York.
[83] Heim, S. and Mitelman, F. (1995) Cancer Cytogenetics: Chromosomal and Molecular Genetic Aberrations of Tumor Cells. 2nd Edition, Wiley-Liss, Inc., New York.
[84] Mandahl, N., Johansson, B., Mertens, F. and Mitelman, F. (2012) Disease-Associated Patterns of Disomic Chromosomes in Hyperhaploid Neoplasms. Genes, Chromosomes and Cancer, 51, 536-544. http://dx.doi.org/10.1002/gcc.21947
[85] Olsson, L., Paulsson, K., Bovee, J.V. and Nord, K.H. (2011) Correction: Clonal Evolution through Loss of Chromosomes and Subsequent Polyploidization in Chondrosarcoma. PLoS ONE, 6, 1-7.
http://dx.doi.org/10.1371/annotation/8f845569-8244-416b-b15e-89562177ce32
[86] Safavi, S., Forestier, E., Golovleva, I., Barbany, G., Nord, K.H., Moorman, A.V., Harrison, C.J., Johansson, B. and Paulsson, K. (2013) Loss of Chromosomes Is the Primary Event in Near-Haploid and Low-Hypodiploid Acute Lymphoblastic Leukemia. Leukemia, 27, 248-250.
http://dx.doi.org/10.1038/leu.2012.227
[87] Peters, B.A., Kermani, B.G., Sparks, A.B., Alferov, O., Alexeev, A., Jiang, Y., et al. (2012) Accurate Whole-Genomic Sequencing and Haplotyping from 10 to 20 Human Cells. Nature, 487, 190-195.
[88] Freed, J.J. and Schatz, S.A. (1969) Chromosome Aberrations in Cultured Cells Deprived of Single Essential Amino Acids. Experimental Cell Research, 55, 393-409. http://dx.doi.org/10.1016/0014-4827(69)90574-6
[89] Deberardinis, R.J. and Cheng, T. (2010) Q’s Next: The Diverse Function of Glutamine in Metabolism, Cell Biology and Cancer. Oncogene, 29, 313-324. http://dx.doi.org/10.1038/onc.2009.358
[90] Zhang, J., Wang, X., Zhao, Y., Chen, B., Suo, G. and Dai, J. (2006) Neoplastic Transformation of Human Diploid Fibroblasts after Long-Term Serum Starvation. Cancer Letters, 243, 101-108.
http://dx.doi.org/10.1016/j.canlet.2005.11.022
[91] Lengauer, C., Kinzler, K.W. and Vogelstein, B. (1998) Genetic Instability in Human Cancers. Nature, 396, 643-649. http://dx.doi.org/10.1038/25292                                                                                                  eww141218lx

Links between Insulin Resistance, Lipoprotein Metabolism and Amyloidosis in Alzheimer’s Disease

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=47483#.VFmII2fHRK0

ABSTRACT

The origins of premature brain aging and chronic disease progression are associated with atherogenic diets and sedentary lifestyles in Western communities. Interests in brain aging that involves non alcoholic fatty liver disease (NAFLD), the global stroke epidemic and neurodegeneration have become the focus of nutritional research. Atherogenic diets have been linked to plasma ceramide dysregulation and insulin resistance actively promoting chronic diseases and neurodegeneration in developed countries. Abnormal lipid signaling as observed in chronic diseases such as hypothyroidism, obesity and diabetes is connected to stroke and neurodegenerative diseases in man. Lipids that are involved in calcium and amyloid betahomeostasis are critical to cell membrane stability with the maintenance of nuclear receptors and transcriptional regulators that are involved in cell chromatin structure and DNA expression. Western diets high in fat induce hyperlipidemia, insulin resistance and other hormonal imbalances that are linked to alterations in brain calcium and lipid metabolism with susceptibility to various chronic diseases such as stroke. Nutrition and food science research identifies dietary components and lipids to prevent hyperlipidemia and calcium dyshomeostasis connected to neuroendocrine disease by maintaining astrocyte-neuron interactions and reversing hormonal imbalances that are closely associated with NAFLD, stroke and Alzheimer’s disease (AD) in global populations.

Cite this paper

Martins, I. and Creegan, R. (2014) Links between Insulin Resistance, Lipoprotein Metabolism and Amyloidosis in Alzheimer’s Disease. Health, 6, 1549-1579. doi: 10.4236/health.2014.612190.

References

[1] Blennow, K., de Leon, M.J. and Zetterberg, H. (2006) Alzheimer’s Disease. The Lancet, 368, 387-403.
http://dx.doi.org/10.1016/S0140-6736(06) 69113-7
[2] Roses, A., Alberts, M. and Strittmatter, W. (1992) Alzheimer’s Disease—Reassessing the Data. Current Biology, 2, 7-9.
http://dx.doi.org/10.1016/0960-9822(92) 90400-5
[3] Brookmeyer, R., Johnson, E., Ziegler-Graham, K. and Arrighi, H.M. (2007) Forecasting the Global Burden of Alzheimer’s Disease. Alzheimer’s Dementia: The Journal of the Alzheimer’s Association, 3, 186-191.
http://dx.doi.org/10.1016/j.jalz.2007.04.381
[4] Ferri, C.P., Prince, M., Brayne, C., Brodaty, H., Fratiglioni, L., Ganguli, M., et al. (2005) Global Prevalence of Dementia: A Delphi Consensus Study. The Lancet, 366, 2112-2117.
http://dx.doi.org/10.1016/S0140-6736(05) 67889-0
[5] Access, Delaying Onset of Alzheimer’s Disease: Predictions and Issues (Internet). 2004-2009 Report No. 30.
[6] Luchsinger, J.A. and Mayeux, R. (2004) Dietary Factors and Alzheimer’s Disease. The Lancet Neurology, 3, 579-587.
http://dx.doi.org/10.1016/S1474-4422(04) 00878-6
[7] Scarmeas, N., Stern, Y., Tang, M.X., Mayeux, R. and Luchsinger, J.A. (2006) Mediterranean Diet and Risk for Alzheimer’s Disease. Annals of Neurology, 59, 912-921.
http://dx.doi.org/10.1002/ana.20854
[8] Gu, Y., Nieves, J.W., Stern, Y., Luchsinger, J.A. and Scarmeas, N. (2010) Food Combination and Alzheimer Disease Risk: A Protective Diet. Archives of Neurology, 67, 699-706.
http://dx.doi.org/10.1001/archneurol.2010.84
[9] Dietschy, J.M. (1998) Dietary Fatty Acids and the Regulation of Plasma Low Density Lipoprotein Cholesterol Concentrations. Journal of Nutrition, 128, 444S-448S.
[10] Woollett, L.A., Spady, D.K. and Dietschy, J.M. (1992) Regulatory Effects of the Saturated Fatty Acids 6:0 through 18:0 on Hepatic Low Density Lipoprotein Receptor Activity in the Hamster.TheJournal of Clinical Investigation, 89, 1133-1141.
http://dx.doi.org/10.1172/JCI115694
[11] Woollett, L.A., Spady, D.K. and Dietschy, J.M. (1992) Saturated and Unsaturated Fatty Acids Independently Regulate Low Density Lipoprotein Receptor Activity and Production Rate. Journal of Lipid Research, 33, 77-88.
[12] Prudovsky, I., Vary, C.P.H., Markaki, Y., Olins, A.L. and Olins, D.E. (2012) Phosphatidylserine Colocalizes with Epichromatin in Interphase Nuclei and Mitotic Chromosomes. Nucleus, 3, 200-210.
http://dx.doi.org/10.4161/nucl.19662
[13] Tata, J.R., Hamilton, M.J. and Cole, D.R. (1972) Membrane Phospholipids Associated with Nuclei and Chromatin: Melting Profile, Template Activity and Stability of Chromatin. Journal of Molecular Biology, 67, 231-236.
http://dx.doi.org/10.1016/0022-2836(72) 90238-0
[14] Viiri, K., Mäki, M. and Lohi, O. (2012) Phosphoinositides as Regulators of Protein-Chromatin Interactions. Science Signaling, 5, pe19.
http://dx.doi.org/10.1126/scisignal.2002917
[15] Jones, D.R. and Divecha, N. (2004) Linking Lipids to Chromatin. Current Opinion Genetic Development, 14, 196-202.
http://dx.doi.org/10.1016/j.gde.2004.02.003
[16] Laclette, J.P. and Montal, M. (1977) Interaction of Calcium with Negative Lipids in Planar Bilayer Membranes. Influence of the Solvent. Biophysical Journal, 19, 199-202.
http://dx.doi.org/10.1016/S0006-3495(77) 85581-1
[17] Verdaguer, N., Corbalan-Garcia, S., Ochoa, W.F., Fita, I. and Gómez-Fernánde, J.C. (1999) Ca2+ Bridges the C2 Membrane-Binding Domain of Protein Kinase Cα Directly to Phosphatidylserine. The EMBO Journal, 18, 6329-6338.
http://dx.doi.org/10.1093/emboj/18.22.6329
[18] Bazan, N.G. (2005) Lipid Sigaling in Neural Plasticity, Brain Repair, and Neuroprotection. Molecular Neurobiology, 32, 89-103.
http://dx.doi.org/10.1385/MN:32:1:089
[19] Wymann, M.P. and Schneiter, R. (2008) Lipid Signalling in Disease. Nature Review Molecular Cellular Biology, 9, 162-176.
http://dx.doi.org/10.1038/nrm2335
[20] Fernandis, A.Z. and Wenk, M.R. (2007) Membrane Lipids as Signaling Molecules. Current Opinion Lipidology, 18, 121-128.
http://dx.doi.org/10.1097/MOL.0b013e328082e4d5
[21] Verdile, G., Fuller, S., Atwood, C.S., Laws, S.M., Gandy, S.E. and Martins, R.N. (2004) The Role of Beta Amyloid in Alzheimer’s Disease: Still a Cause of Everything or the Only One Who Got Caught? Pharmacology Research, 50, 397-409.
http://dx.doi.org/10.1016/j.phrs.2003.12.028
[22] Attems, J., Quass, M., Jellinger, K.A. and Lintner, F. (2007) Topographical Distribution of Cerebral Amyloid Angiopathy and Its Effect on Cognitive Decline Are Influenced by Alzheimer Disease Pathology. Journal of the Neurological Science, 257, 49-55.
http://dx.doi.org/10.1016/j.jns.2007.01.013
[23] Di Paolo, G. and Kim, T.W. (2011) Linking Lipids to Alzheimer’s Disease: Cholesterol and Beyond. Nature Reveiw Neuroscience, 12, 284-296.
http://dx.doi.org/10.1038/nrn3012
[24] Martins, I.J., Berger, T., Sharman, M.J., Verdile, G., Fuller, S.J. and Martins. R/N. (2009) Cholesterol Metabolism and Transport in the Pathogenesis of Alzheimer’s Disease. Journal of Neurochemistry, 111, 1275-1308.
http://dx.doi.org/10.1111/j.1471-4159.2009.06408.x
[25] Martins, I.J., Hone, E., Foster, J.K., Sünram-Lea, S.I., Gnjec, A., Fuller, S.J., et al. (2006) Apolipoprotein E, Cholesterol Metabolism, Diabetes and the Convergence of Risk Factors for Alzheimer’s Disease and Cardiovascular Disease. Molecular Psychiatry, 11, 721-736.
http://dx.doi.org/10.1038/sj.mp.4001854
[26] Piomelli, D., Astarita, G. and Rapaka, R. (2007) A Neuroscientist’s Guide to Lipidomics. Nature Reveiw Neuroscience, 8, 743-754.
http://dx.doi.org/10.1038/nrn2233
[27] Roher, A.E., Kuo, Y.M., Kokjohn, K.M., Emmerling, M.R. and Gracon, S. (1999) Amyloid and Lipids in the Pathology of Alzheimer’s Disease. Amyloid, 6, 136-145.
http://dx.doi.org/10.3109/13506129909007315
[28] Kuo, Y.M., Emmerlingb, M.R., Bisgaierc, C.L., Essenburgc, A.D., Lamperta, H.C., Drumm, D., et al. (1998) Elevated Low Density Lipoprotein in Alzheimer’s Disease Correlates with Brain Abeta 1-42 Levels. Biochimica Biophysica Research Communications, 252, 711-715.
http://dx.doi.org/10.1006/bbrc.1998.9652
[29] Merched, A., Xia, Y., Visvikis, S., Serot, J.M. and Siest, G. (2000) Decreased High-Density Lipoprotein Cholesterol and Serum Apolipoprotein AI Concentrations Are Highly Correlated with the Severity of Alzheimer’s Disease. Neurobiology Ageing, 21, 27-30.
http://dx.doi.org/10.1016/S0197-4580(99) 00103-7
[30] Selkoe, D.J. (2004) Cell Biology of Protein Misfolding: The Examples of Alzheimer’s and Parkinson’s Diseases. Nature Cell Biology, 6, 1054-1061.
http://dx.doi.org/10.1038/ncb1104-1054
[31] Wenk, M.R. (2005) The Emerging Field of Lipidomics. Nature Reveiw Drug Discovery, 4, 594-610.
http://dx.doi.org/10.1038/nrd1776
[32] Craft, S. (2009) The Role of Metabolic Disorders in Alzheimer Disease and Vascular Dementia: Two Roads Converged. Archives of Neurology, 66, 300-305.
http://dx.doi.org/10.1001/archneurol.2009.27
[33] Farooqui, A.A., Farooqui, T., Panza, F. and Frisardi, V. (2012) Metabolic Syndrome as a Risk Factor for Neurological Disorders. Cell and Molecular Life Science, 69, 741-762.
http://dx.doi.org/10.1007/s00018-011-0840-1
[34] Frisardi, V. and Imbimbo B.P. (2012) Metabolic-Cognitive Syndrome: Metabolic Approach for the Management of Alzheimer’s Disease Risk. Journal of Alzheimer’s Disease, 30, S1-S4.
[35] Merlo, S., Spampinato, S., Canonico, P.L., Copani, A. and Sortino, M.A. (2010) Alzheimer’s Disease: Brain Expression of a Metabolic Disorder? Trends in Endocrinology & Metabolism, 21, 537-544.
http://dx.doi.org/10.1016/j.tem.2010.05.005
[36] Luchsinger, J.A. (2012) Type 2 Diabetes and Cognitive Impairment: Linking Mechanisms. Journal of Alzheimer’s Disease, 30, S185-S198.
[37] Moreira, P.I. (2012) Alzheimer’s Disease and Diabetes: An Integrative View of the Role of Mitochondria, Oxidative stress, and Insulin. Journal of Alzheimer’s Disease, 30, S199-S215.
[38] Craft, S. (2005) Insulin Resistance Syndrome and Alzheimer’s Disease: Age- and Obesity-Related Effects on Memory, Amyloid, and Inflammation. Neurobiology of Ageing, 26, 65-69.
http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.021
[39] Watson, G.S. and Craft, S. (2003) The Role of Insulin Resistance in the Pathogenesis of Alzheimer’s Disease: Implications for Treatment. Central Nervous System Drugs, 17, 27-45.
[40] De Felice, F.G., Lourenco, M.V. and Ferreira, S.T. (2014) How Does Brain Insulin Resistance Develops in Alzheimer’s Disease? Alzheimers Dementia, 10, S26-S32.
[41] Chiu, S.L., Chen, C.M. and Cline, H.T. (2008) Insulin Receptor Signaling Regulates Synapse Number, Dendritic Plasticity, and Circuit Function in Vivo. Neuron, 58, 708-719.
http://dx.doi.org/10.1016/j.neuron.2008.04.014
[42] Shoelson, S.E., Lee, J. and Goldfine, A.B. (2006) Inflammation and Insulin Resistance. Journal Clinical Investigation, 116, 1793-1801.
http://dx.doi.org/10.1172/JCI29069
[43] Rizos, C.V., Elisaf, M.S. and Liberopoulos, E.N. (2001) Effects of Thyroid Dysfunction on Lipid Profile. The Open Cardiovascular Medical Journal, 5, 76-84.
http://dx.doi.org/10.2174/1874192401105010076
[44] Quinlan, P., Nordlund, A., Lind, K., Gustafson, D., Edman, Å. and Wallin A. (2010) Thyroid Hormones Are Associated with Poorer Cognition in Mild Cognitive Impairment. Dementia Geriatric Cognition Disorder, 30, 205-211.
http://dx.doi.org/10.1159/000319746
[45] Martins, I.J., Creegan, R., Lim, W.L.F. and Martins, R.N. (2013) Molecular Insights into Appetite Control and Neuroendocrine Disease as Risk Factors for Chronic Diseases in Western Countries. Open Journal of Endocrine and Metabolic Diseases, 3, 11-33.
http://dx.doi.org/10.4236/ojemd.2013.35A002
[46] Burgess, B.L., McIsaac, S.A, Naus, K.E., Chan, J.Y., Tangsley, G.H., Yang, J., et al. (2006) Elevated plasma triglyceride levels precede amyloid deposition in Alzheimer’s disease mouse models with abundant A beta in plasma. Neurobiology of Disease, 24, 114-127.
[47] Chavez, J.A. and Summers, S.A. (2012) A Ceramide-Centric View of Insulin Resistance. Cell Metabolism, 15, 585-594.
http://dx.doi.org/10.1016/j.cmet.2012.04.002
[48] Summers, S.A. (2006) Ceramides in Insulin Resistance and Lipotoxicity. Progress in Lipid Research, 45, 42-72.
http://dx.doi.org/10.1016/j.plipres.2005.11.002
[49] Kowalski, G.M., Carey, A.L., Selathurai, A., Kingwell, B.A. and Bruce, C.R. (2013) Plasma Sphingosine-1-Phosphate Is Elevated in Obesity. PLoS ONE, 8, e72449.
http://dx.doi.org/10.1371/journal.pone.0072449
[50] Hammad, S.M., Al Gadban, M.M., Semler, A.J. and Klein, R.L. (2012) Sphingosine 1-Phosphate Distribution in Human Plasma: Associations with Lipid Profiles. Journal of Lipids, 2012, Article ID: 180705.
http://dx.doi.org/10.1155/2012/180705
[51] Samad, F., Hester, K.D., Yang, G., Hannun, Y.A. and Bielawski, J. (2006) Altered Adipose and Plasma Sphingolipid Metabolism in Obesity: A Potential Mechanism for Cardiovascular and Metabolic Risk. Diabetes, 55, 2579-2587.
http://dx.doi.org/10.2337/db06-0330
[52] Blachnio-Zabielska, A.U., Koutsari, C., Tchkonia, T. and Jensen, M.D. (2012) Sphingolipid Content of Human Adipose Tissue: Relationship to Adiponectin and Insulin Resistance. Obesity (Silver Spring) , 20, 2341-2347.
http://dx.doi.org/10.1038/oby.2012.126
[53] Bikman, B.T. (2012) A Role for Sphingolipids in the Pathophysiology of Obesity-Induced Inflammation. Cellular and Molecular Life Sciences, 69, 2135-2146.
http://dx.doi.org/10.1007/s00018-012-0917-5
[54] Kang, S.C., Kim, B.R., Lee, S.Y. and Park, T.S. (2013) Sphingolipid Metabolism and Obesity-Induced Inflammation. Frontiers in Endocrinology (Lausanne) , 4, 67.
[55] Wilkerson, B.A., Grass, G.D., Wing, S.B., Argraves, W.S. and Argraves, K.M. (2012) Sphingosine 1-Phosphate (S1P) Carrier-Dependent Regulation of Endothelial Barrier: High Density Lipoprotein (HDL) -S1P Prolongs Endothelial Barrier Enhancement as Compared with Albumin-S1P via Effects on Levels, Trafficking, and Signaling of S1P1. TheJournal of Biological Chemistry, 287, 44645-44653.
http://dx.doi.org/10.1074/jbc.M112.423426
[56] Murata, N., Sato, K., Kon, J., Tomura, H., Yanagita, M., Kuwabara, A., et al. (2000) Interaction of Sphingosine 1-Phosphate with Plasma Components, Including Lipoproteins, Regulates the Lipid Receptor-Mediated Actions. Biochemical Journal, 352, 809-815.
http://dx.doi.org/10.1042/0264-6021:3520809
[57] Sattler, K. and Levkau, B. (2009) Sphingosine-1-Phosphate as a Mediator of High-Density Lipoprotein Effects in Cardiovascular Protection. Cardiovascular Research, 82, 201-211.
http://dx.doi.org/10.1093/cvr/cvp070
[58] Dahm, F., Nocito, A., Bielawska, A., Lang, K.S., Georgiev, P., Asmis, L.M., et al. (2006) Distribution and Dynamic Changes of Sphingolipids in Blood in Response to Platelet Activation. Journal of Thrombosis and Haemostasis, 4, 2704-2709.
http://dx.doi.org/10.1111/j.1538-7836.2006.02241.x
[59] Tao, R.V., Sweeley, C.C. and Jamieson, G.A. (1973) Sphingolipid Composition of Human Platelets. Journal of Lipid Research, 14, 16-25.
[60] Saniabadi, A.R., Umemura, K., Shimoyama, M., Adachi, M., Nakano, M. and Nakashima, M. (1997) Aggregation of Human Blood Platelets by Remnant Like Lipoprotein Particles of Plasma Chylomicrons and Very Low Density Lipoproteins. Thrombosis Haemostasis, 77, 996-1001.
[61] Relou, I.A., Hackeng, C.M., Akkerman, J.W. and Malle, E. (2003) Low-Density Lipoprotein and Its Effect on Human Blood Platelets. Cell Molecular& Life Science, 60, 961-971.
[62] Anfossi, G., Russo, I. and Trovati, M. (2009) Platelet Dysfunction in Central Obesity. Nutrition, Metabolism & Cardiovascular Disease, 19, 440-449.
http://dx.doi.org/10.1016/j.numecd.2009.01.006
[63] Santilli, F., Vazzana, N., Liani, R., Guagnano, M.T. and Davì, G. (2011) Platelet Activation in Obesity and Metabolic Syndrome. Obesity Reviews, 13, 27-42.
http://dx.doi.org/10.1111/j.1467-789X.2011.00930.x
[64] Casoli, T., Di Stefano, G., Giorgetti, B., Grossi, Y., Balietti, M., Fattoretti, P. and Bertoni-Freddari, C. (2007) Release of Beta-Amyloid from High-Density Platelets: Implications for Alzheimer’s Disease Pathology. Annuals of the New York Academy of Science, 1096, 170-178.
http://dx.doi.org/10.1196/annals.1397.082
[65] Chen, M., Inestrosa, N.C., Ross, G.S. and Fernandez, H.L. (1995) Platelets Are the Primary Source of Amyloid Beta-Peptide in Human Blood. Biochemical & Biophysic Research Communications, 213, 96-103.
http://dx.doi.org/10.1006/bbrc.1995.2103
[66] Park, T.S., Hu, Y., Noh, H.L., Drosatos, K., Okajima, K., Buchanan, J., et al. (2008) Ceramide Is a Cardiotoxin in Lipotoxic Cardiomyopathy. Journal of Lipid Research, 49, 2101-2112.
http://dx.doi.org/10.1194/jlr.M800147-JLR200
[67] Bikman, B.T. and Summers, S.A. (2011) Ceramides as Modulators of Cellular and Whole-Body Metabolism. Journal of Clinical Investigation, 121, 4222-4230.
http://dx.doi.org/10.1172/JCI57144
[68] Ussher, J.R., Koves, T.R., Cadete, V.J., Zhang, L., Jaswal, J.S., Swyrd, S.J., et al. (2010) Inhibition of De Novo Ceramide Synthesis Reverses Diet-Induced Insulin Resistance and Enhances Whole-Body Oxygen Consumption. Diabetes, 59, 2453-2464.
http://dx.doi.org/10.2337/db09-1293
[69] Galadari, S., Rahman, A., Pallichankandy, S., Galadari, A. and Thayyullathil, F. (2013) Role of Ceramide in Diabetes Mellitus: Evidence and Mechanisms. Lipids in Health Disease, 12, 98.
http://dx.doi.org/10.1186/1476-511X-12-98
[70] Schmitz-Peiffer, C. (2010) Targeting Ceramide Synthesis to Reverse Insulin Resistance. Diabetes, 59, 2351-2353.
http://dx.doi.org/10.2337/db10-0912
[71] Costantini, C., Kolasani, R.M. and Puglielli, L. (2005) Ceramide and Cholesterol: Possible Connections between Normal Ageing of the Brain and Alzheimer’s Disease. Just Hypotheses or Molecular Pathways to Be Identified? Alzheimer’s & Dementia: The Journal of the Alzheimer’s Association, 1, 43-50.
http://dx.doi.org/10.1016/j.jalz.2005.06.004
[72] Hussain, M.M., Jin, W. and Jiang, X.C. (2012) Mechanisms Involved in Cellular Ceramide Homeostasis. Nutrition & Metabolism (London) , 9, 71.
http://dx.doi.org/10.1186/1743-7075-9-71
[73] Filippov, V., Song, M.A., Zhang, K., Vinters, H.V., Tung, S., Kirsch, W.M., et al. (2012) Increased Ceramide in Brains with Alzheimer’s and Other Neurodegenerative Diseases. Journal of Alzheimer’s Disease, 29, 537-547.
[74] Satoi, H., Tomimoto, H., Ohtani, R., Kitano, T., Kondo, T., Watanabe, M., et al. (2005) Astroglial Expression of Ceramide in Alzheimer’s Disease Brains: A Role during Neuronal Apoptosis. Neuroscience, 130, 657-666.
http://dx.doi.org/10.1016/j.neuroscience.2004.08.056
[75] Mielke, M.M., Bandaru, V.V., Haughey, N.J., Xia, J., Fried, L.P., Yasar, S., et al. (2012) Serum Ceramides Increase the Risk of Alzheimer Disease: The Women’s Health and Ageing Study II. Neurology, 14, 633-641.
http://dx.doi.org/10.1212/WNL.0b013e318264e380
[76] Yuyama, K., Mitsutake, S. and Igarashi, Y. (2013) Pathological Roles of Ceramide and Its Metabolites in Metabolic Syndrome and Alzheimer’s Disease.Biochimica et Biophysica Acta (BBA) , Molecular and Cell Biology of Lipids, 1841, 793-798.
http://dx.doi.org/10.1016/j.bbalip.2013.08.002
[77] Corder, E.H., Saunders, A.M., Strittmatter, W.J., Schmechel, D.E., Gaskell, P.C., Small, G.W., et al. (1993) Gene Dose of Apolipoprotein E Type 4 Allele and the Risk of Alzheimer’s Disease in Late onset Families. Science, 261, 921-923.
http://dx.doi.org/10.1126/science.8346443
[78] Saunders, A.M., Strittmatter, W.J., Schmechel, D., St. George-Hyslop, P.H., Pericak-Vance, M.A., Joo, S.H., et al. (1993) Association of Apolipoprotein E Allele Epsilon 4 with Late-Onset Familial and Sporadic Alzheimer’s Disease. Neurology, 43, 1467-1472.
http://dx.doi.org/10.1212/WNL.43.8.1467
[79] Rall, S.C., Weisgraber, K.H. and Mahley, R.W. (1982) Human Apolipoprotein E. The Complete Amino Acid Sequence. Journal of Biological Chemistry, 257, 4171-4178.
[80] Weisgraber, K.H., Innerarity, T.L. and Mahley, R.W. (1982) Abnormal Lipoprotein Receptor-Binding Activity of the Human E Apoprotein Due to Cysteine-Arginine Interchange at a Single Site. Journal of Biological Chemistry, 257, 2518-2521.
[81] Mahley, R.W. and Huang, Y. (1999) Apolipoprotein E: From Atherosclerosis to Alzheimer’s Disease and Beyond. Current Opinion in Lipidology, 10, 207-217.
http://dx.doi.org/10.1097/00041433-199906000-00003
[82] Feussner, G., Feussner, V., Hoffmann, M.M., Lohrmann, J., Wieland, H. and M?rz, W. (1998) Molecular Basis of Type III Hyperlipoproteinemia in Germany. Human Mutation, 11, 417-423.
[83] Huang, X., Chen, P.C. and Poole, C. (2004) APOE-[Epsilon]2 Allele Associated with Higher Prevalence of Sporadic Parkinson Disease. Neurology, 62, 2198-2202.
http://dx.doi.org/10.1212/01.WNL.0000130159.28215.6A
[84] Strittmatter, W.J., Saunders, A.M., Schmechel, D., Pericak-Vance, M., Enghild, J., Salvesen, G.S., et al. (1993) Apolipoprotein E: High-Avidity Binding to Beta-Amyloid and Increased Frequency of Type 4 Allele in Late-Onset Familial Alzheimer Disease. Proceedings of the National Academy of Sciences of the United States of America, 90, 1977-1981.
http://dx.doi.org/10.1073/pnas.90.5.1977
[85] Deary, I.J., Whiteman, M.C., Pattie, A., Starr, J.M., Hayward, C., Wright, A.F., et al. (2002) Cognitive Change and the APOE Epsilon 4 Allele. Nature, 418, 932.
http://dx.doi.org/10.1038/418932a
[86] Chapman, J., Vinokurov, S., Achiron, A., Karussis, D.M., Mitosek-Szewczyk, K., Birnbaum, M., et al. (2011) APOE Genotype Is a Major Predictor of Long-Term Progression of Disability in MS. Neurology, 56, 312-316.
http://dx.doi.org/10.1212/WNL.56.3.312
[87] McCarron, M.O., Delong, D. and Alberts, M.J. (1999) APOE Genotype as a Risk Factor for Ischemic Cerebrovascular Disease: A Meta-Analysis. Neurology, 53, 1308-1311.
http://dx.doi.org/10.1212/WNL.53.6.1308
[88] Kadotani, H., Kadotani, T., Young, T., Peppard, P.E., Finn, L., Colrain, I.M., et al. (2001) Association between Apolipoprotein E Epsilon4 and Sleep-Disordered Breathing in Adults. Journal of American Medical Association, 285, 2888-2890.
http://dx.doi.org/10.1001/jama.285.22.2888
[89] Gottlieb, D.J., DeStefano, A.L., Foley, D.J., Mignot, E., Redline, S., Givelber, R.J., et al. (2004) APOE Epsilon4 Is Associated with Obstructive Sleep Apnea/Hypopnea: The Sleep Heart Health Study. Neurology, 63, 664-668.
http://dx.doi.org/10.1212/01.WNL.0000134671.99649.32
[90] Martins, R.N., Clarnette, R., Fisher, C., Broe, G.A., Brooks, W.S., Montgomery, P., et al. (1995) ApoE Genotypes in Australia: Roles in Early and Late Onset Alzheimer’s Disease and Down’s Syndrome. Neuroreport, 6, 1513-1516.
http://dx.doi.org/10.1097/00001756-199507310-00012
[91] Bales, K.R., Dodart, J.C., DeMattos, R.B., Holtzman, D.M. and Paul, S.M. (2002) Apolipoprotein E, Amyloid, and Alzheimer Disease. Molecular Interventions, 2, 363-375.
http://dx.doi.org/10.1124/mi.2.6.363
[92] Zheng, H. and Koo, E.H. (2006) The Amyloid Precursor Protein: Beyond Amyloid. Molecular Neurodegeneration, 1, 5.
http://dx.doi.org/10.1186/1750-1326-1-5
[93] Beel, A.J., Sakakura, M., Barrett, P.J. and Sanders, C.R. (2010) Direct Binding of Cholesterol to the Amyloid Precursor Protein: An Important Interaction in Lipid-Alzheimer’s Disease Relationships? Biochimica et Biophysica Acta (BBA) , Molecular and Cell Biology of Lipids, 1801, 975-982.
http://dx.doi.org/10.1016/j.bbalip.2010.03.008
[94] Korade, Z. and Kenworthy, A.K. (2008) Lipid Rafts, Cholesterol, and the Brain. Neuropharmacology, 55, 1265-1273.
http://dx.doi.org/10.1016/j.neuropharm.2008.02.019
[95] Zhang, Y.W. and Xu, H. (2007) Molecular and Cellular Mechanisms for Alzheimer’s Disease: Understanding APP Metabolism. Current Molecular Medicine, 7, 687-696.
[96] O’Brien, R.J. and Wong P.C. (2011) Amyloid Precursor Protein Processing and Alzheimer’s Disease. Annual Reveiw Neuroscience, 34, 185-204.
[97] Zhang, Y.W., Thompson, R., Zhang, H. and Xu, H. (2011) APP Processing in Alzheimer’s Disease. Molecular Brain, 4, 1-13.
[98] Zhang, Q., Yang, G., Li, W., Fan, Z., Sun, A., Luo, J. and Ke, Z.J. (2011) Thiamine Deficiency Increases Beta-Secretase Activity and Accumulation of Beta-Amyloid Peptides. Neurobiology of Ageing, 32, 42-53.
http://dx.doi.org/10.1016/j.neurobiolaging.2009.01.005
[99] Puglielli, L., Ellis, B.C., Saunders, A.J. and Kovacs, D.M. (2002) Ceramide Stabilizes Beta-Site Amyloid Precursor Protein-Cleaving Enzyme 1 and Promotes Amyloid Beta-Peptide Biogenesis. Journal of Biological Chemistry, 278, 19777-19783.
http://dx.doi.org/10.1074/jbc.M300466200
[100] Li, H., Kim, W.S., Guillemin, G.J., Hill, A.F., Evin, G. and Garner, B. (2010) Modulation of Amyloid Precursor Protein Processing by Synthetic Ceramide Analogues. Biochimca et Biophysica Acta (BBA) , Molecular and Cell Biology of Lipids, 1801, 887-895
[101] Takasugi, N., Sasaki, T., Suzuki, K., Osawa, S., Isshiki, H., Hori, Y., et al. (2011) BACE1 Activity Is Modulated by Cell-Associated Sphingosine-1-Phosphate. The Journal of Neuroscience, 31, 6850-6857.
http://dx.doi.org/10.1523/JNEUROSCI.6467-10.2011
[102] Gassowska, M., Cieslik, M., Wilkaniec, A. and Strosznajder, J.B. (2014) Sphingosine Kinases/Sphingosine-1-Phosphate and Death Signalling in APP-Transfected Cells. Neurochemical Research, 39, 645-652.
http://dx.doi.org/10.1007/s11064-014-1240-3
[103] Maysinger, D., Holmes, M., Han, X., Epand, R.M., Pertens, E., Foerster, A., et al. (2008) Ceramide Is Responsible for the Failure of Compensatory Nerve Sprouting in Apolipoprotein E Knock-Out Mice. Journal of Neuroscience, 28, 7891-7899.
http://dx.doi.org/10.1523/JNEUROSCI.1461-08.2008
[104] Jeong, T.S., Schissel, S.L. Tabas, I., Pownall, H.J., Tall, A.R. and Jiang, X. (1998) Increased Sphingomyelin Content of Plasma Lipoproteins in Apolipoprotein E Knockout Mice Reflects Combined Production and Catabolic Defects and Enhances Reactivity with Mammalian Sphingomyelinase. Journal of Clinical Investigation, 101, 905-912.
http://dx.doi.org/10.1172/JCI870
[105] Bandaru, V.V., Troncoso, J., Wheeler, D., Pletnikova, O., Wang, J., Conant, K., et al. (2004) ApoE4 Disrupts Sterol and Sphingolipid Metabolism in Alzheimer’s but Not Normal Brain. Neurobiology of Ageing, 30, 591-599.
http://dx.doi.org/10.1016/j.neurobiolaging.2007.07.024
[106] Reitz, C., Tang, M.X., Luchsinger, J. and Mayeux, R.(2004) Relation of Plasma Lipids to Alzheimer Disease and Vascular Dementia. Archives of Neurology, 61, 705-714.
http://dx.doi.org/10.1001/archneur.61.5.705
[107] Hayden, K.M., Zandi, P.P., Lyketsos, C.G., Khachaturian, A.S., Bastian, L.A., Charoonruk, G., et al. (2006) Vascular Risk Factors for Incident Alzheimer Disease and Vascular Dementia: The Cache County Study. Alzheimer Disease & Association Disorders, 20, 93-100.
http://dx.doi.org/10.1097/01.wad.0000213814.43047.86
[108] Reitz, C., Tang, M.X., Schupf, N., Manly, J.J., Mayeux, R. and Luchsinger, J.A. (2010) Association of Higher Levels of High-Density Lipoprotein Cholesterol in Elderly Individuals and Lower Risk of Late-Onset Alzheimer Disease. Archives of Neurology, 67, 1491-1497.
http://dx.doi.org/10.1001/archneurol.2010.297
[109] Bowman, G.L., Kaye, J.A. and Quinn, J.F. (2012) Dyslipidemia and Blood-Brain Barrier Integrity in Alzheimer’s Disease. Current Gerontology and Geriatric Research, 2012, 1-5.
http://dx.doi.org/10.1155/2012/184042
[110] Jiang, X.C., Bruce, C., Mar, J., Lin, M., Ji, Y., Francone, O.L., et al. (1999) Targeted Mutation of Plasma Phospholipid Transfer Protein Gene Markedly Reduces High-Density Lipoprotein Levels. Journal Clinical Investigation, 103, 907-914. http://dx.doi.org/10.1172/JCI5578
[111] Qin, S., Kawano, K., Bruce, C., Lin, M., Bisgaier, C., Tall, A.R., et al. (2000) Phospholipid Transfer Protein Gene Knock-Out Mice Have Low High Density Lipoprotein Levels, Due to Hypercatabolism, and Accumulate apoA-IV-Rich Lamellar Lipoproteins. Journal of Lipid Research, 41, 269-276.
[112] Jiang, X.C., Jin, W. and Hussain, M.M. (2012) The Impact of Phospholipid Transfer Protein (PLTP) on Lipoprotein Metabolism. Nutrition& Metabolism (London) , 9, 75.
http://dx.doi.org/10.1186/1743-7075-9-75
[113] Levels, J.H., Marquart, J.A., Abraham, P.R., van den Ende, A.E., Molhuizen, H.O., van Deventer, S.J., et al. (2005) Lipopolysaccharide Is Transferred from High-Density to Low-Density Lipoproteins by Lipopolysaccharide-Binding Protein and Phospholipid Transfer Protein. Infection and Immunity, 73, 2321-2326.
http://dx.doi.org/10.1128/IAI.73.4.2321-2326.2005
[114] Rao, R., Albers, J.J., Wolfbauer, G. and Pownall, H.J. (1997) Molecular and Macromolecular Specificity of Human Plasma Phospholipid Transfer Protein. Biochemistry, 36, 3645-3653.
http://dx.doi.org/10.1021/bi962776b
[115] Wang, H., Yu, Y., Chen, W., Cui, Y., Luo, T., Ma, J., et al. (2014) PLTP Deficiency Impairs Learning and Memory Capabilities Partially Due to Alteration of Amyloid-β Metabolism in Old Mice. Journal of Alzheimer’s Disease, 39, 79-88
[116] Desrumaux, C., Pisoni, A., Meunier, J., Deckert, V., Athias, A., Perrier, V., et al. (2013) Increased Amyloid-β Peptide-Induced Memory Deficits in Phospholipid Transfer Protein (PLTP) Gene Knockout Mice. Neuropsychopharmacology, 38, 817-825.
http://dx.doi.org/10.1038/npp.2012.247
[117] Desrumaux, C., Risold, P.Y., Schroeder, H., Deckert, V., Masson, D., Athias, A., et al. (2005) Phospholipid Transfer Protein (PLTP) Deficiency Reduces Brain Vitamin E Content and Increases Anxiety in Mice. FASEB Journal, 19, 296-297.
[118] Yang, C.Y., Raya, J.L., Chen, H.H., Chen, C.H., Abe, Y., Pownall, H.J., et al. (2003) Isolation, Characterization, and Functional Assessment of Oxidatively Modified Subfractions of Circulating Low-Density Lipoproteins. Arteriosclerosis, Thrombosis, and Vascular Biology, 23, 1083-1090.
http://dx.doi.org/10.1161/01.ATV.0000071350.78872.C4
[119] Huuskonen, J. and Ehnholm, C. (2000) Phospholipid Transfer Protein in Lipid Metabolism. Current Opinion in Lipidology, 11, 285-289.
http://dx.doi.org/10.1097/00041433-200006000-00009
[120] Huuskonen, J., Olkkonen, V.M., Ehnholm, C., Metso, J., Julkunen, I. and Jauhiainen, M. (2000) Phospholipid Transfer Is a Prerequisite for PLTP-Mediated HDL Conversion. Biochemistry, 39, 16092-16098.
http://dx.doi.org/10.1021/bi0019287
[121] Demeester, N., Castro, G., Desrumaux, C., De Geitere, C., Fruchart, J.C., Santens, P., et al. (2000) Characterization and Functional Studies of Lipoproteins, Lipid Transfer Proteins, and Lecithin: Cholesterol Acyltransferase in CSF of Normal Individuals and Patients with Alzheimer’s Disease. Journal Lipid Research, 41, 963-974.
[122] Dullaart, R.P., van Tol, A. and Dallinga-Thie, G.M. (2013) Phospholipid Transfer Protein, an Emerging Cardiometabolic Risk Marker: Is It Time to Intervene? Atherosclerosis, 228, 38-41.
http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.043
[123] Robins, S.J., Lyass, A., Brocia, R.W., Massaro, J.M. and Vasan, R.S. (2013) Plasma Lipid Transfer Proteins and Cardiovascular Disease. The Framingham Heart Study. Atherosclerosis, 228, 230-236.
http://dx.doi.org/10.1016/j.atherosclerosis.2013.01.046
[124] Schlitt, A., Bickel, C., Thumma, P., Blankenberg, S., Rupprecht, H.J., Meyer, J., et al. (2003) High Plasma Phospholipid Transfer Protein Levels as a Risk Factor for Coronary Artery Disease. Arteriosclerosis Thrombosis, Thrombosis, and Vascular Biology, 23, 1857-1862.
http://dx.doi.org/10.1161/01.ATV.0000094433.98445.7F
[125] Yatsuya, H., Tamakoshi, K., Hattori, H., Otsuka, R., Wada, K., Zhang, H., et al. (2004) Serum Phospholipid Transfer Protein Mass as a Possible Protective Factor for Coronary Heart Diseases. Circulation Journal, 68, 11-16.
http://dx.doi.org/10.1253/circj.68.11
[126] Schgoer, W., Mueller, T., Jauhiainen, M., Wehinger, A., Gander, R., Tancevski, I., et al. (2008) Low Phospholipid Transfer Protein (PLTP) Is a Risk Factor for Peripheral Atherosclerosis. Atherosclerosis, 196, 219-226.
http://dx.doi.org/10.1016/j.atherosclerosis.2007.04.046
[127] van Tol, A. (2002) Phospholipid Transfer Protein. Current Opinion in Lipidology, 13, 135-139.
http://dx.doi.org/10.1097/00041433-200204000-00004
[128] Tall, A.R., Abreu, E. and Shuman, J. (1983) Separation of a Plasma Phospholipid Transfer Protein from Cholesterol Ester/Phospholipid Exchange Protein. Journal of Biological Chemistry, 258, 2174-2180.
[129] Lightle, S., Tosheva, R., Leea, A., Queen-Bakera, J., Boyanovsky, B., Shedlofsky, S., et al. (2003) Elevation of Ceramide in Serum Lipoproteins during Acute Phase Response in Humans and Mice: Role of Serine-Palmitoyl Transferase. Archives of Biochemistry and Biophysics, 419, 120-128.
http://dx.doi.org/10.1016/j.abb.2003.08.031
[130] Nikolova-Karakashian, M.N. (2002) CHAPTER 15, Ceramide in Serum Lipoproteins: Function and Regulation of Metabolism. In: Futerman, A.H., Ed., Ceramide Signaling, Eurekah.com and Kluwer Academic/Plenum Publishers, New York.
[131] Hanada, K., Kumagai, K., Tomishige, N. and Kawano, M. (2007) CERT and Intracellular Trafficking of Ceramide. Biochimica et Biophysica Acta (BBA) , Molecular and Cell Biology of Lipids, 1771, 644-653.
http://dx.doi.org/10.1016/j.bbalip.2007.01.009
[132] Pinto, S.N., Silva, L.C., Futerman, A.H. and Prieto, M. (2011) Effect of Ceramide Structure on Membrane Biophysical Properties: The Role of Acyl Chain Length and Unsaturation. Biochimica et Biophysica Acta (BBA) , Biomembranes, 1808, 2753-2760.
http://dx.doi.org/10.1016/j.bbamem.2011.07.023
[133] Huuskonen, J., Olkkonen, V.M., Jauhiainen, M., Metso, J., Somerharju, P. and Ehnholm, C. (1996) Acyl Chain and Headgroup Specificity of Human Plasma Phospholipid Transfer Protein. Biochimica et Biophysica Acta (BBA) , Lipids and Lipid Metabolism, 1303, 207-214.
http://dx.doi.org/10.1016/0005-2760(96) 00103-8
[134] Kontush, A., Therond, P., Zerrad, A., Couturier, M., Négre-Salvayre, A., de Souza, J.A., et al. (2007) Preferential Sphingosine-1-Phosphate Enrichment and Sphingomyelin Depletion Are Key Features of Small Dense HDL3 Particles: Relevance to Antiapoptotic and Antioxidative Activities. Arteriosclerosis Thrombosis, Thrombosis, and Vascular Biology, 27, 1843-1849.
http://dx.doi.org/10.1161/ATVBAHA.107.145672
[135] Takabe, K., Paugh, S.W., Milstien, S. and Spiegel, S. (2008) “Inside-Out” Signaling of Sphingosine-1-Phosphate: Therapeutic Targets. Pharmacological Review, 60, 181-195.
http://dx.doi.org/10.1124/pr.107.07113
[136] Yu, Y., Guo, S., Feng, Y., Feng, L., Cui, Y., Song, G., et al. (2014) Phospholipid Transfer Protein Deficiency Decreases the Content of S1P in HDL via the Loss of Its Transfer Capability. Lipids, 49, 183-190.
http://dx.doi.org/10.1007/s11745-013-3850-y
[137] Pfreiger, F.W. and Ungerer, N. (2011) Cholesterol Metabolism in Neurons and Astrocytes. Progress in Lipid Research, 50, 357-371.
http://dx.doi.org/10.1016/j.plipres.2011.06.002
[138] Pfrieger, F.W. (2003) Outsourcing in the Brain: Do Neurons Depend on Cholesterol Delivery by Astrocytes? BioEssays, 25, 72-78.
http://dx.doi.org/10.1002/bies.10195
[139] Smith, I.F., Green, K.N. and LaFerla, F.M. (2005) Calcium Dysregulation in Alzheimer’s Disease: Recent Advancesgained from Genetically Modified Animals. Cell Calcium, 38, 427-437.
http://dx.doi.org/10.1016/j.ceca.2005.06.021
[140] Hansson, E. and Rönnbäck, L.L. (2003) Glial Neuronal Signaling in the Central Nervous System. The FASEB Journal, 17, 341-348.
http://dx.doi.org/10.1096/fj.02-0429rev
[141] Dringen, R., Gutterer, J.M. and Hirrlinger, J. (2000) Glutathione Metabolism in Brain. Metabolic Interaction between Astrocytes and Neurons in the Defense against Reactive Oxygen Species. European Journal of Biochemistry, 267, 4912-4916.
http://dx.doi.org/10.1046/j.1432-1327.2000.01597.x
[142] Chen, Y., Vartiainen, N.E., Ying, W., Chan, P.H., Koistinaho, J. and Swanson, R.A. (2001) Astrocytes Protect Neurons from Nitric Oxide Toxicity by a Glutathione-Dependent Mechanism. Journal of Neurochemistry, 77, 1601-1610.
http://dx.doi.org/10.1046/j.1471-4159.2001.00374.x
[143] Thal, D.R. (2012) The Role of Astrocytes in Amyloid β-Protein Toxicity and Clearance. Experimental Neurology, 236, 1-5.
http://dx.doi.org/10.1016/j.expneurol.2012.04.021
[144] Meyer, R.P., Knotha, R., Schiltzb, E. and Volk, B. (2001) Possible Function of Astrocyte Cytochrome P450 in Control of Xenobiotic Phenytoin in the Brain: In Vitro Studies on Murine Astrocyte Primary Cultures. Experimental Neurology, 167, 376-384.
http://dx.doi.org/10.1006/exnr.2000.7553
[145] Volk, B., Meyer, R.P. and Knoth, R. (2004) Chapter 4. Function of Astrocyte Cytochrome P450 in Control of Xenobiotic Metabolism. In: Aschner, M. and Lucio, G.C., Eds., The Role of Glia in Neurotoxicity, 2nd Edition, CRC Press, Boca Raton, 61-72.
[146] Harris, F.M., Tesseur, I., Brecht, W.J., Xu, Q., Mullendorff, K., Chang, S., et al. (2004) Astroglial Regulation of Apolipoprotein E Expression inNeuronal Cells. The Journal of Biological Chemistry, 279, 3862-3868.
http://dx.doi.org/10.1074/jbc.M309475200
[147] Gee, J.R. and Keller, J.N. (2005) Astrocytes: Regulation of Brain Homeostasis via Apolipoprotein E. The International Journal Biochemistry & Cell Biology, 37, 1145-1150.
http://dx.doi.org/10.1016/j.biocel.2004.10.004
[148] Wang, X., Ciraolob, G., Morrisb, R. and Gruenstein, E. (1997) Identification of a Neuronal Endocytic Pathway Activated by an Apolipoprotein E (apoE) Receptor Binding Peptide. Brain Research, 778, 6-15.
http://dx.doi.org/10.1016/S0006-8993(97) 00877-9
[149] Misra, U.K., Adlakha, C.L., Gawdi, G., McMillian, M.K., Pizzo, S.V. and Laskowitz, D.T. (2001) Apolipoprotein E and Mimetic Peptide Initiate a Calcium-Dependent Signaling Response in Macrophages. Journal of Leukocyte Biology, 70, 677-683.
[150] Morikawa, M., Fryera, J.D., Sullivanb, P.M., Christophera, E.A., Wahrlea, S.E., DeMattos, R.B., et al. (2005) Production and Characterization of Astrocyte-Derived Human Apolipoprotein E Isoforms from Immortalized Astrocytes and Their Interactions with Amyloid-Beta. Neurobiology of Disease, 19, 66-76.
http://dx.doi.org/10.1016/j.nbd.2004.11.005
[151] Sato, K., Malchinkhuu, E., Horiuchi, Y., Mogi, C., Tomura, H., Tosaka, M., et al. (2007) Critical Role of ABCA1 Transporter in Sphingosine 1-Phosphate Release from Astrocytes. Journal of Neurochemistry, 103, 2610-2619.
[152] Jänis, M.T., Metso, J., Lankinen, H., Strandin, T., Olkkonen, V.M., Rye, K.A., et al. (2005) Apolipoprotein E Activates the Low-Activity form of Human Phospholipid Transfer Protein. Biochemical and Biophysical Research Communications, 331, 333-340.
http://dx.doi.org/10.1016/j.bbrc.2005.03.164
[153] Tan, K.C., Shiu, S.W.M., Wong, Y., Wong, W.K. and Tam, S. (2006) Plasma Apolipoprotein E Concentration Is an Important Determinant of Phospholipid Transfer Protein Activity in Type 2 Diabetes Mellitus. Diabetes/Metabolism Research and Review, 22, 307-312.
http://dx.doi.org/10.1002/dmrr.616
[154] Oram, J.F., Wolfbauer, G., Tang, C., Davidson, W.S. and Albers, J.J. (2008) An Amphipathic Helical Region of the N-Terminal Barrel of Phospholipid Transfer Protein Is Critical for ABCA1-Dependent Cholesterol Efflux. Journal of Biological Chemistry, 283, 11541-11549.
http://dx.doi.org/10.1074/jbc.M800117200
[155] Lalanne, F., Motta, C., Pafumi, Y., Lairon, D. and Ponsin, G. (2001) Modulation of the Phospholipid Transfer Protein-Mediated Transfer of Phospholipids by Diacylglycerols. The Journal of Lipid Research, 42, 142-149.
[156] Gabuzda, D., Busciglio, J. and Yankner, B.A. (1993) Inhibition of Beta-Amyloid Production by Activation of Protein Kinase C. Journal of Neurochemistry, 61, 2326-2329.
http://dx.doi.org/10.1111/j.1471-4159.1993.tb07479.x
[157] Tanabe, F., Nakajima, T. and Ito, M. (2014) Involvement of Diacylglycerol Produced by Phospholipase D Activation in Aβ-Induced Reduction of sAPPα Secretion in SH-SY5Y Neuroblastoma Cells. Biochemistry and Biophysics Research Communication, 446, 933-939.
http://dx.doi.org/10.1016/j.bbrc.2014.03.038
[158] Mungenast, A.E. (2011) Diacylglycerol Signaling Underlies Astrocytic ATP Release. Neural Plasticity, 2011, Article ID: 537659.
http://dx.doi.org/10.1155/2011/537659
[159] Garwood, C.J., Pooler, A.M., Atherton, J., Hanger, D.P. and Noble, W. (2011) Astrocytes Are Important Mediators of Aβ-Inducedneurotoxicity and Tau Phosphorylation in Primary Culture. Cell Death and Disease, 2, e167.
http://dx.doi.org/10.1038/cddis.2011.50
[160] Nagele, R.G., D’Andrea, M.R., Lee, H., Venkataraman, V. and Wang, H.Y. (2003) Astrocytes Accumulate A Beta 42 and Give Rise to Astrocytic Amyloid Plaques in Alzheimer Disease Brains. Brain Research, 971, 197-209.
http://dx.doi.org/10.1016/S0006-8993(03) 02361-8
[161] Wyss-Coray, T., Loike, J.D., Brionne, T.C., Lu, E., Anankov, R., Yan, F., et al. (2003) Adult Mouse Astrocytes Degrade Amyloid-β in Vitro and in Situ. Nature Medicine, 9, 453-457,
http://dx.doi.org/10.1038/nm838
[162] Canepa, E., Borghi, R., Viña, J., Traverso, N., Gambini, J., Domenicotti, C., et al. (2011) Cholesterol and Amyloid-β: Evidence for a Cross-Talk between Astrocytes and Neuronal Cells. Journal of Alzheimer’s Disease, 25, 645-653.
[163] Ghering, A.B. and Davidson, W.S. (2006) Ceramide Structural Features Required to Stimulate ABCA1-Mediated Cholesterol Efflux to Apolipoprotein A-I. Journal of Lipid Research, 47, 2781-2788.
http://dx.doi.org/10.1194/jlr.M600380-JLR200
[164] Witting, S.R., Maiorano, N. and Davidson, W.S. (2003) Ceramide Enhances Cholesterol Efflux to Apolipoprotein A-I by Increasing the Cell Surface Presence of ATP-Binding Cassette Transporter A1.The Journal of Biological Chemistry, 278, 40121-40127.
http://dx.doi.org/10.1074/jbc.M305193200
[165] Martins, I.J., Lim, W.L.F., Wilson, A.C., Laws, S.M. and Martins, R.N. (2013) The Acceleration of Aging and Alzheimer’s Disease through the Biological Mechanisms Behind Obesity and Type II Diabetes. Health, 5, 913-992.
http://dx.doi.org/10.4236/health.2013.55121
[166] Lim, F.L., Lam, S.M., Shui, G., Mondal, A., Ong, D., Duan, X., et al. (2013) Effects of a High-Fat, High-Cholesterol Diet on Brain Lipid Profiles in Apolipoprotein E ε3 and ε4 Knock-In Mice. Neurobiology of Aging, 34, 2217-2224.
http://dx.doi.org/10.1016/j.neurobiolaging.2013.03.012
[167] Frisardi, V., Panza, F., Seripa, D., Farooqui, T. and Farooqui, A.A. (2011) Glycerophospholipids and Glycerophospholipid-Derived Lipid Mediators: A Complex Meshwork in Alzheimer’s Disease Pathology. Progress in Lipid Research, 50, 313-330.
http://dx.doi.org/10.1016/j.plipres.2011.06.001
[168] Caggiula, A.W. and Mustad, V.A. (1997) Effects of Dietary Fat and Fatty Acids on Coronary Artery Disease Risk and total and Lipoprotein Cholesterol Concentrations: Epidemiologic Studies. American Journal of Clinical Nutrition, 65, 1597S-1610S.
[169] Kris-Etherton, P.M. and Yu, S. (1997) Individual Fatty Acid Effects on Plasma Lipids and Lipoproteins: Human Studies. American Journal Clinical Nutrition, 65, 1628S-1644S.
[170] Kris-Etherton, P.M., Yu, S., Etherton, T.D., Morgan, R., Moriarty, K. and Shaffer, D. (1997) Fatty Acids and Progression of Coronary Artery Disease. American Journal of Clinical Nutrition, 65, 1088-1090.
[171] Gill, J.M. and Sattar, N. (2009) Ceramides: A New Player in the Inflammation-Insulin Resistance Paradigm? Diabetologia, 52, 2475-2477.
http://dx.doi.org/10.1007/s00125-009-1546-x
[172] Espenshade, P.J. (2006) SREBPs: Sterol Regulated Transcription Factors. Journal of Cell Science, 119, 973-976.
[173] Spady, D.K., Woollett, L.A. and Dietschy, J.M. (1993) Regulation of Plasma LDL-Cholesterol Levels by Dietary Cholesterol and Fatty Acids. Annual Reveiw Nutrition, 13, 355-381.
http://dx.doi.org/10.1146/annurev.nu.13.070193.002035
[174] Worgall, T.S., Juliano, R.A., Seo, T. and Deckelbaum, R.J. (2004) Ceramide Synthesis Correlates with the Posttranscriptional Regulation of the Sterol-Regulatory Element-Binding Protein. Arteriosclerosis, Thrombosis, and Vascular Biology, 24, 943-948.
http://dx.doi.org/10.1161/01.atv.0000125703.20434.4d
[175] Ascherio, A., Katan, M.B., Zock, P.L., Stampfer, M.J. and Willett, W.C. (1994) Trans Fatty Acids and Coronary Heart Disease. The New England Journal of Medicine, 340, 1994-1998.
http://dx.doi.org/10.1056/NEJM199906243402511
[176] Morris, M.C., Evans, D.A., Bienias, J.L., Tangney, C.C., Bennett, D.A., Aggarwal, N., et al. (2003) Dietary Fats and the Risk of Incident Alzheimer Disease. Archives of Neurology, 60, 194-200.
http://dx.doi.org/10.1001/archneur.60.2.194
[177] Bowman, G.L., Silbert, L.C., Howieson, D., Dodge, H.H., Traber, M.G., Frei, B., et al. (2012) Nutrient Biomarker Patterns, Cognitive Function, and MRI Measures of Brain Aging. Neurology, 78, 241-249.
http://dx.doi.org/10.1212/WNL.0b013e3182436598
[178] Mauger, J.F., Lichtenstein, A.H., Ausman, L.M., Jalbert, S.M., Jauhiainen, M., Ehnholm, C., et al. (2003) Effect of Different Forms of Dietary Hydrogenated Fats on LDL Particle Size. American Journal Clinical Nutrition, 78, 370-375.
[179] van Tol, A., Zock, P.L., van Gent, T., Scheek, L.M. and Katan, M. (1995) Dietary Trans Fatty Acids Increase Serum Cholesteryl Ester Transfer Protein Activity in Man. Atherosclerosis, 115, 129-134.
http://dx.doi.org/10.1016/0021-9150(94) 05509-H
[180] Parks, J.S., Huggins, K.W., Gebre, A.K. and Burleson, E.R. (2000) Phosphatidylcholine Fluidity and Structure Affect Lecithin: Cholesterol Acyltransferase Activity. Journal of Lipid Research, 41, 546-553.
[181] Khan, S.A. and Heuvel, J.P.V. (2003) Reviews: Current Topicsrole of Nuclear Receptors in the Regulation of Gene Expression by Dietary Fatty Acids (Review). The Journal of Nutritional Biochemistry, 14, 554-567.
http://dx.doi.org/10.1016/S0955-2863(03) 00098-6
[182] Heuvel, J.P.V. (2009) Cardiovascular Disease-Related Genes and Regulation by Diet. Current Atherosclerosis Reports, 11, 448-455.
http://dx.doi.org/10.1007/s11883-009-0067-x
[183] Heuvel, J.P.V. (2004) Diet, Fatty Acids, and Regulation of Genes Important for Heart Disease. Current Atherosclerosis Reports, 6, 432-440.
http://dx.doi.org/10.1007/s11883-004-0083-9
[184] Cantó, C., Jiang, L.Q., Deshmukh, A.S., Mataki, C., Coste, A., Lagouge, M., Zierath, J.R., et al. (2010) Interdependence of AMPK and SIRT1 for Metabolic Adaptation to Fasting and Exercise in Skeletal Muscle. Cell Metabolism, 11, 213-219.
http://dx.doi.org/10.1016/j.cmet.2010.02.006
[185] Wang, J., Fivecoata, H., Hoa, L., Pana, Y., Linga, E.and Pasinetti, G.M. (2010) The Role of Sirt1: At the Crossroad between Promotion of Longevity and Protection against Alzheimer’s Disease Neuropathology. Biochimica et Biophysica Acta (BBA) , Proteins and Proteomics, 1804, 1690-1694.
http://dx.doi.org/10.1016/j.bbapap.2009.11.015
[186] Donmez, G., Wang, D., Cohen, D.E. and Guarente, L. (2010) SIRT1 Suppresses Beta-Amyloid Production by Activating the Alpha-Secretase Gene ADAM10. Cell, 142, 320-332.
http://dx.doi.org/10.1016/j.cell.2010.06.020
[187] Xu, F., Gao, Z., Zhang, J., Rivera, C.A., Yin, J., Weng, J., et al. (2010) Lack of SIRT1 (Mammalian Sirtuin 1) Activity Leads to Liver Steatosis in the SIRT1+/﹣ Mice: A Role of Lipid Mobilization and Inflammation. Endocrinology, 151, 2504-2514.
http://dx.doi.org/10.1210/en.2009-1013
[188] Purushotham, A., Xu, Q. and Li, X. (2012) Systemic SIRT1 Insufficiency Results in Disruption of Energy Homeostasis and Steroid Hormone Metabolism upon High-Fat-Diet Feeding. The FASEB Journal, 26, 656-667.
http://dx.doi.org/10.1096/fj.11-195172
[189] Martins, I.J., Wilson, A.C., Lim, W.L.F., Laws, S.M., Fuller, S.J. and Martins, R.N. (2012) Sirtuin-1 Mediates the Obesity Induced Risk of Common Degenerative Diseases: Alzheimer’s Disease, Coronary Artery Disease and Type 2 Diabetes. Health, 4, 1448-1456.
http://dx.doi.org/10.4236/health.2012.412A209
[190] Honig, L.S., Tang, M.X., Albert, S., Costa, R., Luchsinger, J., Manly, J., et al. (2003) Stroke and the Risk of Alzheimer Disease. Archives of Neurology, 60, 1707-1712.
http://dx.doi.org/10.1001/archneur.60.12.1707
[191] Albi, E., Michelli, M. and Magni, M.P.V. (1996) Phospholipids and Nuclear RNA. Cell Biology International, 20, 407-412.
http://dx.doi.org/10.1006/cbir.1996.0051
[192] Zhdanov, R.I., Struchkov, V.A., Dyabina, O. and Strazhevskaya, N.B. (2001) Chromatin-Bound Cardiolipin: The Phospholipid of Proliferation.Cytobios, 106, 55-61.
[193] Albi, E. and Magni, M.P.V. (2004) The Role of Intranuclear Lipids. Biology of the Cell, 96, 657-667.
http://dx.doi.org/10.1016/j.biolcel.2004.05.004
[194] Hunt, A.N. (2006) Dynamic Lipidomics of the Nucleus. Journal of Cellular Biochemistry, 97, 244-251.
http://dx.doi.org/10.1002/jcb.20691
[195] Albi, E. and Villani, M. (2009) Nuclear Lipid Microdomains Regulate Cell Function. Communicative & Integrative Biology, 2, 23-24.
http://dx.doi.org/10.4161/cib.2.1.7376
[196] Cascianelli, G., Villani, M., Tosti, M., Marini, F., Bartoccini, E., Magni, M.V., et al. (2008) Lipid Microdomains in Cell Nucleus. Molecular Biology of the Cell, 19, 5289-5295.
http://dx.doi.org/10.1091/mbc.E08-05-0517
[197] Bazan, N.G. (2005) Synaptic Signaling by Lipids in the Life and Death of Neurons. Molecular Neurobiology, 31, 219-230.
http://dx.doi.org/10.1385/MN:31:1-3:219
[198] Pope, S., Land, J.M. and Heales, S.J. (2008) Oxidative Stress and Mitochondrial Dysfunction in Neurodegeneration; Cardiolipin a Critical Target? Biochimica et Biophysica Acta (BBA) , Bioenergetics, 1777, 794-799.
http://dx.doi.org/10.1016/j.bbabio.2008.03.011
[199] Kirkland, R.A., Adibhatla, R.M., Hatcher, J.F. and Franklin, J.L. (2002) Loss of Cardiolipin and Mitochondria during Programmed Neuronal Death: Evidence of a role for Lipid Peroxidation and Autophagy. Neuroscience, 115, 587-602.
http://dx.doi.org/10.1016/S0306-4522(02) 00512-2
[200] Pébay, A., Toutant, M., Prémont, J., Calvo, C.F., Venance, L., Cordier, J., et al. (2001) Sphingosine-1-Phosphate Induces Proliferation of Astrocytes: Regulation by Intracellular Signalling Cascades. European Journal of Neuroscience, 13, 2067-2076.
http://dx.doi.org/10.1046/j.0953-816x.2001.01585.x
[201] Lucki, N.C. and Sewer, M.B. (2012) Nuclear Sphingolipid Metabolism. Annual Review of Physiology, 74, 131-151.
http://dx.doi.org/10.1146/annurev-physiol-020911-153321
[202] Spohr, T.C., Dezonne, R.S., Nones, J., Souza, C., Einicker-Lamas, M., Gomes, F.C.A., et al. (2012) Sphingosine 1-Phosphate-Primed Astrocytes Enhance Differentiation of Neuronal Progenitor Cells. Journal of Neuroscience Research, 90, 1892-902.
http://dx.doi.org/10.1002/jnr.23076
[203] Stipursky, J., Spohr, T.C., Sousa, V.O. and Gomes, F.C.A. (2012) Neuron-Astroglial Interactions in Cell-Fate Commitment and Maturation in the Central Nervous System. Neurochemistry Research, 37, 2402-2418.
http://dx.doi.org/10.1007/s11064-012-0798-x
[204] Buccoliero, R. and Futerman, A.H. (2003) The Roles of Ceramide and Complex Sphingolipids in Neuronal Cell Function. Pharmacology Research, 47, 409-419.
http://dx.doi.org/10.1016/S1043-6618(03) 00049-5
[205] Chun-Xia, Y. and Tschöp, M.H. (2012) Brain-Gut-Adipose-Tissue Communication Pathways at a Glance. Disease Models & Mechanisms, 5, 583-587.
http://dx.doi.org/10.1242/dmm.009902
[206] Caspi, L., Wang, P.Y and Lam, T.K. (2007) A Balance of Lipid-Sensing Mechanismsin the Brain and Liver. Cell Metabolism, 6, 99-104.
http://dx.doi.org/10.1016/j.cmet.2007.07.005
[207] Vacca, M., Degirolamo, C., Mariani-Costantini, R., Palasciano, G. and Moschetta, A. (2011) Lipid-Sensing Nuclear Receptors in the Pathophysiology and Treatment of the Metabolic Syndrome. Wiley Interdisciplinary Reviews: Systems Biology and Medicine, 3, 562-587.
http://dx.doi.org/10.1002/wsbm.137
[208] Beaven, S.W. and Tontonoz, P. (2006) Nuclear Receptors in Lipid Metabolism: Targeting the Heart of Dyslipidemia. Annual Review of Medicine, 57, 313-329.
http://dx.doi.org/10.1146/annurev.med.57.121304.131428
[209] Ferrari, A., Fiorino, E., Giudici, M., Gilardi, F., Galmozzi, A., Mitro, N., et al. (2012) Linking Epigenetics to Lipid Metabolism: Focus on Histone Deacetylases. Molecular Membrane Biology, 29, 257-266.
http://dx.doi.org/10.3109/09687688.2012.729094
[210] Goetzl, E.J. (2007) Diverse Pathways for Nuclear Signaling by G Protein-Coupled Receptors and Their Ligands. The FASEB Journal, 21, 638-642.
http://dx.doi.org/10.1096/fj.06-6624hyp
[211] Alemany, R., Perona, J.S., Sánchez-Dominguez, J.M., Montero, E., Cañizares, J., Bressani, R., Escribá, P.V., et al. (2007) G Protein-Coupled Receptor Systems and Their Lipid Environment in Health Disorders during Aging. Biochimica et Biophysica Acta (BBA, Biomembranes, 1768, 964-975.
http://dx.doi.org/10.1016/j.bbamem.2006.09.024
[212] Takahashi, T., Kajikawa, Y. and Tsujimoto, T. (1998) G-Protein-Coupled Modulation of Presynaptic Calcium Currents and Transmitter Release by a GABAB Receptor. The Journal of Neuroscience, 18, 3138-3146.
[213] Zamponia, G.W. and Currie, K.P.M. (2013) Regulation of CaV2 Calcium Channels by G Protein Coupled Receptors. Biochimica et Biophysica Acta (BBA, Biomembranes, 1828, 1629-1643.
http://dx.doi.org/10.1016/j.bbamem.2012.10.004
[214] Riboni, L., Prinetti, A., Bassi, R. and Tettamanti, G. (1994) Formation of Bioactive Sphingoid Molecules from Exogenous Sphingomyelin in Primary Cultures of Neurons and Astrocytes. FEBS Letters, 352, 323-326.
http://dx.doi.org/10.1016/0014-5793(94) 00984-8
[215] Reimertz, C., Reimertz, C., Münstermann, G., Kögel, D. and Prehn, J.H.M. (2002) Ceramide-Induced Apoptosis of D283 Medulloblastoma Cells Requires Mitochondrial Respiratory Chain Activity but Occurs Independently of Caspases and Is Not Sensitive to Bcl-xL Overexpression. Journal of Neurochemistry, 82, 482-494.
http://dx.doi.org/10.1046/j.1471-4159.2002.01007.x
[216] Won, J.S, Singh, A.K. and Singh, I. (2007) Lactosylceramide: A Lipid Second Messenger in Neuroinflammatory Disease. Journal of Neurochemistry, 103, 180-191.
http://dx.doi.org/10.1111/j.1471-4159.2007.04822.x
[217] Hannun, Y.A. and Obeid, L.M. (2008) Principles of Bioactive Lipid Signalling: Lessons from Sphingolipids. Nature Reviews Molecular Cell Biology, 9, 139-150.
http://dx.doi.org/10.1038/nrm2329
[218] Spiegel, S. and Milstien, S. (2002) Sphingosine 1-Phosphate, a Key Cell Signaling Molecule. The Journal of Biological Chemistry, 277, 25851-25854.
http://dx.doi.org/10.1074/jbc.R200007200
[219] Walter, L., Franklin, A., Witting, A., Möller, T. and Stella, N. (2002) Astrocytes in Culture Produce Anandamide and Other Acylethanolamides. Journal of Biological Chemistry, 277, 20869-20876.
http://dx.doi.org/10.1074/jbc.M110813200
[220] Rao, R.P., Vaidyanathan, N., Rengasamy, M., Oommen, A.M., Somaiya, N. and Jagannath, M.R. (2013) Sphingolipid Metabolic Pathway: An Overview of Major Roles Played in Human Diseases. Journal of Lipids, 2013, Article ID: 178910.
http://dx.doi.org/10.1155/2013/178910
[221] Ariga, T., Jarvis, W.D. and Yu, R.K. (1998) Role of Sphingolipid-Mediated Cell Death in Neurodegenerative Diseases. Journal of Lipid Research, 39, 1-16.
[222] Nishimura, H., Akiyama, T., Irei, I., Hamazaki, S. and Sadahira, Y. (2010) Cellular Localization of Sphingo-sine-1-Phosphate Receptor 1 Expression in the Human Central Nervous System. Journal of Histochemistry Cytochemistry, 58, 847-856.
[223] Burrows, E.L. and Bird, R.J. (2012) Obesity-Associated Steatotic Liver Exhibits Aberrant or Altered Sphingolipid Composition and Preferentially Accumulates Ceramide Species Containing Long Chain Fatty Acids. Health, 4, 1578-1587.
http://dx.doi.org/10.4236/health.2012.412A226
[224] Samad, F., et al. (2006) Altered Adipose and Plasma Sphingolipid Metabolism in Obesity: A Potential Mechanism for Cardiovascular and Metabolic Risk. Diabetes, 55, 2579-2587.
http://dx.doi.org/10.2337/db06-0330
[225] Kowalski, G.M., et al. (2013) Plasma Sphingosine-1-Phosphate Is Elevated in Obesity. PLoS ONE, 8, e72449.
http://dx.doi.org/10.1371/journal.pone.0072449
[226] Dinkins, M., He, Q., Zhu, G., Poirier, C., Campbell, A., Mayer-Proschel, M., et al. (2012) Astrocytes Secrete Exosomes Enriched with Proapoptotic Ceramide and Prostate Apoptosis Response 4 (PAR-4) : Potential Mechanism of Apoptosis Induction in Alzheimer Disease (AD).Journal of Biological Chemistry, 287, 21384-21395.
[227] Navarrete, M. and Araque, A. (2008) Endocannabinoids Mediate Neuron-Astrocyte Communication. Neuron, 57, 883-893.
http://dx.doi.org/10.1016/j.neuron.2008.01.029
[228] Berghuis, P., Dobszay, M.B., Wang, X., Spano, S., Ledda, F., Sousa, K.M., et al. (2005) Endocannabinoids Regulate Interneuron Migration and Morphogenesis by Transactivating the TrkB Receptor. Proceedings of the National Academy of Sciences of the United States of America, 102, 19115-19120.
http://dx.doi.org/10.1073/pnas.0509494102
[229] Diana, M.A and Bregestovski, P. (2005) Calcium and Endocannabinoids in the Modulation of Inhibitory Synaptic Transmission. Cell Calcium, 37, 497-505.
http://dx.doi.org/10.1016/j.ceca.2005.01.020
[230] Kuo, J. and Ikeda, S.R. (2004) Endocannabinoids Modulate N-Type Calcium Channels and G-Protein-Coupled Inwardly Rectifying Potassium Channels via CB1 Cannabinoid Receptors Heterologously Expressed in Mammalian Neurons. Molecular Pharmacology, 65, 665-674.
http://dx.doi.org/10.1124/mol.65.3.665
[231] Bosier, B., Bellocchio, L., Metna-Laurent, M., Soria-Gomez, E., Matias, I., Hebert-Chatelain, E., et al. (2013) Astroglial CB1 Cannabinoid Receptors Regulate Leptin Signalling in Mouse Brain Astrocytes. Molecular Mechanism, 2, 393-404.
[232] Kirkham, T.C. (2009) Cannabinoids and Appetite: Food Craving and Food Pleasure. International Review of Psychiatry, 21, 163-171.
[233] Lichtman, A.H. and Cravatt, B.F. (2005) Food for Thought: Endocannabinoid Modulation of Lipogenesis. The Journal of Clinical Investigation, 115, 1130-1133.
http://dx.doi.org/10.1172/JCI25076
[234] Martins, I.J., et al. (2013) Anti-Oxidative Acyl CoA Cholesterol Acyltransferase Inhibitor AVASIMIBE Reduces the Impact of a High Cholesterol Diet on Brain Lipid Peroxidation in Mice. ADPD2013, Florence.
http://www.kenes.com
[235] Petrosillo, P., Portincasab, P., Grattaglianob, I., Casanovaa, G., Materaa, M., Ruggiero, F.M., et al. (2007) Mitochondrial Dysfunction in Rat with Nonalcoholic Fatty Liver: Involvement of Complex I, Reactive Oxygen Species and Cardiolipin. Biochimica Biophysica Acta (BBA), Bioenergetics, 1767, 1260-1267.
http://dx.doi.org/10.1016/j.bbabio.2007.07.011
[236] Sparagna, G.C., Chicco, A.J., Murphy, R.C., Bristow, M.R., Johnson, C.A., Rees, M.L., et al. (2007) Loss of Cardiac Tetralinoleoyl Cardiolipin in Human and Experimental Heart Failure. The Journal of Lipid Research, 48, 1559-1570.
http://dx.doi.org/10.1194/jlr.M600551-JLR200
[237] Han, X., Yang, J., Yang, K., Zhao, Z., Abendschein, D.R. and Gross, R.W. (2007) Alterations in Myocardial Cardiolipin Content and Composition Occur at the Very Earliest Stages of Diabetes: A Shotgun Lipidomics Study. Biochemistry, 46, 6417-6428.
http://dx.doi.org/10.1021/bi7004015
[238] Paradies, G., Petrosillo, G., Paradies, V. and Ruggiero, F.M. (2011) Mitochondrial Dysfunction in Brain Aging: Role of Oxidative Stress and Cardiolipin. Neurochemistry International, 58, 447-457.
http://dx.doi.org/10.1016/j.neuint.2010.12.016
[239] Wiswedel, I., Gardemann, A., Storch, A., Peter, D. and Schild, L. (2010) Degradation of Phospholipids by Oxidative Stress—Exceptional Significance of Cardiolipin. Free Radical Research, 44, 135-145.
http://dx.doi.org/10.3109/10715760903352841
[240] Demuro, A., Smith, M. and Parker, I. (2011) Single-Channel Ca2+ Imaging Implicates Aβ1-42 Amyloid Pores in Alzheimer’s Disease Pathology. Journal of Cell Biology, 195, 515-524.
http://dx.doi.org/10.1083/jcb.201104133
[241] Short, B. (2011) Imaging β Amyloid’s Pore Performance: Study Visualizes Alzheimer’s Disease-Related Peptides Forming Toxic Calcium Channels in the Plasma Membrane. Journal of Cell Biology, 195, 345.
http://dx.doi.org/10.1083/jcb.1953if
[242] Walsh, P. and Sharpe, S. (2011) Structure-Toxicity Relationships of Amyloid Peptide Oligomers. In: Chang, R.C.C, Ed., Advanced Understanding of Neurodegenerative Diseases, InTech, Rijeka, Chapter 4.
[243] Merril, A.H. (1999) Regulation of Cytochrome P450 Expression by Sphingolipids. Chemistry and Physics Lipids, 102, 131-139.
http://dx.doi.org/10.1016/S0009-3084(99) 00081-X
[244] Kim, Y.M., Park, T.S and Kim, S.G. (2013) The Role of Sphingolipids in Drug Metabolism and Transport. Expert Opinion on Drug Metabolic &Toxicology, 9, 319-331.
http://dx.doi.org/10.1517/17425255.2013.748749
[245] Osindea, M., Mullershausenb, F. and Deva, K.K. (2007) Phosphorylated FTY720 Stimulates ERK Phosphorylation in Astrocytes via S1P Receptors. Neuropharmacology, 52, 1210-1218.
http://dx.doi.org/10.1016/j.neuropharm.2006.11.010
[246] Bradley, S.J. and Challiss, R.A. (2012) G Protein-Coupled Receptor Signalling in Astrocytes in Health and Disease: A Focus on Metabotropic Glutamate Receptors. Biochemistry Pharmacology, 84, 249-259.
http://dx.doi.org/10.1016/j.bcp.2012.04.009
[247] Vassart, G.and Costagliola, S. (2011) G Protein-Coupled Receptors: Mutations and Endocrine Diseases. Nature Review Endocrinology, 7, 362-372.
http://dx.doi.org/10.1038/nrendo.2011.20
[248] Gobeil, F., Fortier, A., Zhu, T., Bossolasco, M., Leduc, M., Grandbois, M., et al. (2006) G-Protein-Coupled Receptors Signalling at the Cell Nucleus: An Emerging Paradigm. Canadian Journal of Physiology Pharmacology, 84, 287-297.
http://dx.doi.org/10.1139/y05-127
[249] Erol, A. (2008) An Integrated and Unifying Hypothesis for the Metabolic Basis of Sporadic Alzheimer’s Disease. Journal of Alzheimer’s Disease, 13, 241-253.
[250] Hsuchou, H., He, Y., Kastin, A.J., Tu, H., Markadakis, E.N., Rogers, R.C., et al. (2009) Obesity Induces Functional Astrocytic Leptin Receptors in Hypothalamus. Brain, 132, 889-902.
http://dx.doi.org/10.1093/brain/awp029
[251] Chowen, J.A., Argente, J. and Horvath, T.L. (2013) Uncovering Novel Roles of Nonneuronal Cells in Body Weight Homeostasis and Obesity. Endocrinology, 154, 3001-3007.
http://dx.doi.org/10.1210/en.2013-1303
[252] García-Cáceres, C., Fuente-Martín, E., Argente, J.and Chowen, J.A. (2012) Emerging Role of Glial Cells in the Control of Body Weight. Molecular Metabolism, 1, 37-46.
http://dx.doi.org/10.1016/j.molmet.2012.07.001
[253] Lee, E.B. and Ahima, R.S. (2012) Alteration of Hypothalamic Cellular Dynamics in Obesity. The Journal of Clinical Investigation, 122, 22-25.
http://dx.doi.org/10.1172/JCI61562
[254] Levin, B.E., Magnan, C., Dunn-Meynell, A. and Le Foll, C. (2011) Metabolic Sensing and the Brain: Who, What, Where, and How? Endocrinology, 152, 2552-2557.
http://dx.doi.org/10.1210/en.2011-0194
[255] García-Cáceres, C., Yi, C.X. and Tschöp, M.H. (2013) Hypothalamic Astrocytes in Obesity. Endocrinology and Metabolism Clinical of North America, 42, 57-66.
http://dx.doi.org/10.1016/j.ecl.2012.11.003
[256] Fuente-Martín, E., García-Cáceres, C., Granado, M., de Ceballos, M.L., Sánchez-Garrido, M.á., Sarman, B., et al. (2012) Leptin Regulates Glutamate and Glucose Transporters in Hypothalamic Astrocytes. The Journal of Clinical Investigation, 122, 3900-3913.
http://dx.doi.org/10.1172/JCI64102
[257] Sheridan, P.A. (2010) Obesity and Microglial Activation: Potential for Synergism in Neurodegenerative Diseases. The FASEB Journal (Meeting Abstract Supplement), 326, 24.
[258] Thaler, J.P., et al. (2011) Rapid Onset of Hypothalamic Inflammation, Reactive Gliosis and Microglial Accumulation during High-Fat Diet-Induced Obesity. Endocrinology Review, 32.
[259] Yi, C.X., Al-Massadia, O., Donelana, E., Lehtia, M., Webera, J., Ress, C., et al. (2012) Exercise Protects against High-Fat Diet-Induced Hypothalamic Inflammation. Physiology & Behavior, 106, 485-490.
http://dx.doi.org/10.1016/j.physbeh.2012.03.021
[260] Buckmana, L.B., Hasty, A.H., Flaherty, D.K., Buckman, C.T., Thompson, M.M., Matlock, B.K., et al. (2014) High-Fat Diet Induced Obesity Is Associated with CNS Recruitment of Monocytes with the Phenotype of Activated Microglia/Macrophage. Brain Behaviour and Immunity, 35, 33-42.
[261] Camargo N., Brouwers, J.F., Loos, M., Gutmann, D.H., Smit, A.B. and Verheijen, M.H.G. (2012) High-Fat Diet Ameliorates Neurological Deficits Caused by Defective Astrocyte Lipid Metabolism. TheFASEB Journal, 26, 4302-4315.
http://dx.doi.org/10.1096/fj.12-205807
[262] Moraes, J.C., Coope, A., Morari, J., Cintra, D.E., Roman, E.A., Pauli, J.R., et al. (2009) High-Fat Diet Induces Apoptosis of Hypothalamic Neurons. PLoS ONE, 4, e5045.
http://dx.doi.org/10.1371/journal.pone.0005045
[263] Gandhi G.K., Ball, K.K., Cruz, N.F. and Dienel, G.A. (2010) Hyperglycaemia and Diabetes Impair Gap Junctional Communication among Astrocytes. ASN Neurology, 2, e00030.
http://dx.doi.org/10.1042/AN20090048
[264] Coleman, E.S., Dennisa, J.C., Bradena, T.D., Judda, R.L. and Posner, P. (2010) Insulin Treatment Prevents Diabetes-Induced Alterations Inastrocyte Glutamate Uptake and GFAP Content in Rats at 4 and 8Weeks of Diabetes Duration. Brain Research, 1306, 131-141.
http://dx.doi.org/10.1016/j.brainres.2009.10.005
[265] Muranyi, M., Ding, C., He, Q.P., Lin, Y. and Li, P.A. (2006) Streptozotocin-Induced Diabetes Causes Astrocyte Death after Ischemia and Reperfusion Injury. Diabetes, 55, 349-355.
http://dx.doi.org/10.2337/diabetes.55.02.06.db05-0654
[266] Montgomery, D.L. (1994) Astrocytes: Form, Functions, and Roles in Disease.Veterinary Pathology, 31, 145-167.
http://dx.doi.org/10.1177/030098589403100201
[267] Garcia-Segura, L.M., Chowen, J.A. and Naftolin, F. (1996) Endocrine Glia: Roles of Glial Cells in the Brain Actions of Steroid and Thyroid Hormones and in the Regulation of Hormone Secretion. Frontiers in Neuroendocrinology, 17, 180-211.
http://dx.doi.org/10.1006/frne.1996.0005
[268] Theodosis, D.T., Piet, R., Poulain, D.A. and Oliet, S.H.R. (2004) Neuronal, Glial and Synaptic Remodeling in the Adult Hypothalamus: Functional Consequences and Role of Cell Surface and Extracellular Matrix Adhesion Molecules. Neurochemistry International, 45, 491-501.
http://dx.doi.org/10.1016/j.neuint.2003.11.003
[269] Horvath, T.L., Sarmana, B., García-Cáceresd, C., Enriorie, P.J., Sotonyia, P., Shanabrough, M., et al. (2010) Synaptic Input Organization of the Melanocortin System Predicts Diet-Induced Hypothalamic Reactive Gliosis and Obesity. Proceedings of the National Academy of Sciences of the United States of America, 107, 14875-14880.
http://dx.doi.org/10.1073/pnas.1004282107
[270] Thaler, J.P., Yi, C.X., Schur, E.A., Guyenet, S.J., Hwang, B.H., Dietrich, M.O., et al. (2012) Obesity Is Associated with Hypothalamic Injury in Rodents and Humans. The Journal of Clinical Investigation, 122, 153-162.
http://dx.doi.org/10.1172/JCI59660
[271] Yi, C.X., Habegger, K.M., Chowen, J.A., Stern J. and Tschöp, M.H. (2011) A Role for Astrocytes in the Central Control of Metabolism. Neuroendocrinology, 93, 143-149.
http://dx.doi.org/10.1159/000324888
[272] Sundvall, J., Saltevo, J., Niskanen, L., Kautiainen, H., Teittinen, J., Oksa, H., et al. (2011) Serum Calcium Level Is Associated with Metabolic Syndrome in the General Population: FIN-D2D Study. European Journal of Endocrinology, 165, 429-434.
http://dx.doi.org/10.1530/EJE-11-0066
[273] Sun, G., Vasdev, S., Martin, G.R., Gadag, V. and Zhang, H. (2005) Altered Calcium Homeostasis Is Correlated with Abnormalities of Fasting Serum Glucose, Insulin Resistance, and Beta-Cell Function in the Newfoundland Population. Diabetes, 51, 3336-3339.
http://dx.doi.org/10.2337/diabetes.54.11.3336
[274] Hagström, E., Hellman, P., Lundgren, E., Lind, L. and Ärnlöv, J. (2007) Serum Calcium Is Independently Associated with Insulin Sensitivity Measured with Euglycaemic-Hyperinsulinaemic Clamp in a Community-Based Cohort. Diabetologia, 50, 317-324.
http://dx.doi.org/10.1007/s00125-006-0532-9
[275] Santos, L.C.D., Cintra, I.D.P., Fisberg, M. and Martini, L.A. (2008) Calcium Intake and Its Relationship with Adiposity and Insulin Resistance in Post-Pubertal Adolescents. Journal of Human Nutrition and Dietetics, 21, 109-116.
http://dx.doi.org/10.1111/j.1365-277X.2008.00848.x
[276] Draznin, B. (1993) Cytosolic Calcium and Insulin Resistance. American Journal of Kidney Diseases, 21, S32-S38.
http://dx.doi.org/10.1016/0272-6386(93) 70122-F
[277] Wang, X., Takano, T. and Nedergaard, M. (2009) Astrocytic Calcium Signaling: Mechanism and Implications for Functional Brain Imaging. Methods Molecular Biology, 489, 93-109.
http://dx.doi.org/10.1007/978-1-59745-543-5_5
[278] Dejeansa, N., Tajeddine, N., Beck, R., Verrax, J., Taper, H., Gailly, P., et al. (2010) Endoplasmic Reticulum Calcium Release Potentiates the ER Stress and Cell Death Caused by an Oxidative Stress in MCF-7 Cells. Biochemical Pharmacology, 79, 1221-1230.
http://dx.doi.org/10.1016/j.bcp.2009.12.009
[279] Hammadi, M., Oulidi, A., Gackière, F., Katsogiannou, M., Slomianny, C., Roudbaraki, M., et al. (2013) Modulation of ER Stress and Apoptosis by Endoplasmic Reticulum Calcium Leak via Translocon during Unfolded Protein Response: Involvement of GRP78. The FASEB Journal, 27, 1600-1609.
http://dx.doi.org/10.1096/fj.12-218875
[280] Schönthal, A.H. (2012) Endoplasmic Reticulum Stress: Its Role in Disease and Novel Prospects for Therapy. Scientifica (Cairo), 2012, Article ID: 857516.
http://dx.doi.org/10.6064/2012/857516
[281] Xu, C., Bailly-Maitre, B. and Reed, J.C. (2005) Endoplasmic Reticulum Stress: Cell Life and Death Decisions. The Journal of Clinical Investigation, 115, 2656-2664.
http://dx.doi.org/10.1172/JCI26373
[282] Fu, S., Yang, L., Li, P., Hofmann, O., Dicker, L., Hide, W., et al. (2011) Aberrant Lipid Metabolism Disrupts Calcium Homeostasis Causing Liver Endoplasmic Reticulum Stress in Obesity. Nature, 473, 528-531.
http://dx.doi.org/10.1038/nature09968
[283] Högback, S., Leppimäki, P., Rudnäs, B., Björklund, S., Slotte, J.P. and Törnquist, K. (2003) Ceramide 1-Phosphate Increases Intracellular Free Calcium Concentrations in thyroid FRTL-5 Cells: Evidence for an Effect Mediated by Inositol 1, 4, 5-Trisphosphate and Intracellular Sphingosine 1-Phosphate. Biochemical Journal, 370, 111-119.
http://dx.doi.org/10.1042/BJ20020970
[284] Kobrinsky, E., Spielman, A.I., Rosenzweig, S. and Marks, A.R. (1999) Ceramide Triggers Intracellular Calcium Release via the IP(3) Receptor in Xenopus laevis Oocytes. American Journal of Physiology, 277, C665-C672.
[285] Darios, F., Muriel, M.P., Khondiker, M.E., Brice, A. and Ruberg, M. (2005) Neurotoxic Calcium Transfer from Endoplasmic Reticulumto Mitochondria Is Regulated by Cyclin-Dependent Kinase5-Dependent Phosphorylation of Tau. The Journal of Neuroscience, 25, 4159-4168.
http://dx.doi.org/10.1523/JNEUROSCI.0060-05.2005
[286] Sergeeva, M., Strokin, M. and Reiser, G. (2005) Regulation of Intracellular Calcium Levels by Polyunsaturated Fatty Acids, Arachidonic Acid and Docosahexaenoic Acid, in Astrocytes: Possible Involvement of Phospholipase A2. Reproduction Nutrition Development, 45, 633-646.
http://dx.doi.org/10.1051/rnd:2005050
[287] Bonin, A. and Khan, N.A. (2000) Regulation of Calcium Signalling by Docosahexaenoic Acid in Human T-Cells. Implication of CRAC Channels. Journal of Lipid Research, 41, 277-284.
[288] Vreugdenhil, M., Bruehl, C., Voskuyl, R.A., Kang, J.X., Leaf, A. and Wadman, W.J. (1996) Polyunsaturated Fatty Acids Modulate Sodium and Calcium Currentsin CA1 Neurons. Proceedings of the National Academy of Sciences of the United States of America, 93, 12339-12365.
http://dx.doi.org/10.1073/pnas.93.22.12559
[289] Venable, M.E., Zimmerman, G.A., McIntyre, T.M. and Prescott, S.M. (1993) Platelet-Activating Factor: A Phospholipid Autacoid with Diverse Actions. Journal of Lipid Research, 34, 691-702.
[290] Bazan, N.G. (1993) The Neuromessenger Platelet-Activating Factor in Plasticity and Neurodegeneration. Progress in Brain Research, 118, 281-291.
http://dx.doi.org/10.1016/S0079-6123(08) 63215-X
[291] Kudolo, G.B., Bressler, P. and DeFronzo, R.A. (1997) Plasma PAF Acetylhydrolase in Non-Insulin Dependent Diabetes Mellitus and Obesity: Effect of Hyperinsulinemia and Lovastatin Treatment. Journal of Lipid Mediator and Cell Signalling, 17, 97-113.
http://dx.doi.org/10.1016/S0929-7855(97) 00023-0
[292] Matsubara, S.M., Maruoka, S. and Katayose, S. (2002) Inverse Relationship between Plasma Adiponectin and Leptin Concentrations in Normal-Weight and Obese Women.European Journal of Endocrinology, 147, 173-180.
http://dx.doi.org/10.1530/eje.0.1470173
[293] Ybarra, Y., Doñate, T., Jurado, J. and Pou, J.M. (2007) Primary Hyperparathyroidism, Insulin Resistance and Cardiovascular Disease. A Review. Nursing Clinics of North America, 42, 79-85.
http://dx.doi.org/10.1016/j.cnur.2006.11.010
[294] Lee, E.B., Warmann, G., Dhir, R. and Ahima, R.S. (2011) Metabolic Dysfunction Associated with Adiponectin Deficiency Enhances Kainic Acid-Induced Seizure Severity. The Journal of Neuroscience, 31, 14361-14366.
http://dx.doi.org/10.1523/JNEUROSCI.3171-11.2011
[295] Dezonne, R.S., Stipursky, J., Araujo, A.P., Nones, J., Pavão, M.S., Porcionatto, M., et al. (2013) Thyroid Hormone Treated Astrocytes Induce Maturation of Cerebral Cortical Neurons through Modulation of Proteoglycan Levels. Frontiers in Cell Neuroscience, 7, 125.
[296] Trentin, A.G. (2006) Thyroid Hormone and Astrocyte Morphogenesis. Journal of Endocrinology, 189, 189-197.
http://dx.doi.org/10.1677/joe.1.06680
[297] Calzà, L. (2007) Thyroid Hormone Regulation of Neural and Oligodendrocyte Precursors in the Mature Brain: A Possibility for Remyelination and Neuroprotection. Endocrine Abstracts, 14, S2.
[298] Perello, M. and Raingo, J. (2013) Leptin Activates Oxytocin Neurons of the Hypothalamic Paraventricular Nucleus in Both Control and Diet-Induced Obese Rodents. PLoS ONE, 8, e59625.
http://dx.doi.org/10.1371/journal.pone.0059625
[299] Velmurugan, S., Russell, J.A. and Leng, G. (2013) Systemic Leptin Increases the Electrical Activity of Supraoptic Nucleus Oxytocin Neurones in Virgin and Late Pregnant Rats. Journal of Neuroendocrinology, 25, 383-390.
http://dx.doi.org/10.1111/jne.12016
[300] Hoyda, T.D., Fry, M., Ahima, R.S. and Ferguson, A.V. (2007) Adiponectin Selectively Inhibits Oxytocin Neurons of the Paraventricular Nucleus of the Hypothalamus. Journal of Physiology, 585, 805-816.
http://dx.doi.org/10.1113/jphysiol.2007.144519
[301] Ciosek, J. and Drobnik, J. (2004) Vasopressin and Oxytocin Release and the Thyroid Function. Journal of Physiology Pharmacology, 55, 423-441.
[302] Betsy, A., Binitha, M.P. and Sarita, S. (2013) Zinc Deficiency Associated with Hypothyroidism: An Overlooked Cause of Severe Alopecia. International Journal of Trichology, 5, 40-42.
http://dx.doi.org/10.4103/0974-7753.114714
[303] Gee, J.R. and Keller, J.N. (2005) Astrocytes: Regulation of Brain Homeostasis via Apolipoprotein E. International Journal of Biochemistry Cell Biology, 37, 1145-1150.
http://dx.doi.org/10.1016/j.biocel.2004.10.004
[304] Zhao, Z. and Michaely, P. (2009) The Role of Calcium in Lipoprotein Release by the Low-Density Lipoprotein Receptor. Biochemistry, 48, 7313-7324.
http://dx.doi.org/10.1021/bi900214u
[305] Mulder, M., Koopmansb, G., Wassinkb, G., Al Mansourib, G., Simardb, M.L., Havekes, L.M., et al. (2007) LDL Receptor Deficiency Results in Decreased Cell Proliferation and Presynaptic Bouton Density in the Murine Hippocampus. Neuroscience Research, 59, 251-256.
http://dx.doi.org/10.1016/j.neures.2007.07.004
[306] Faux, C.H. and Parnavela, J.G. (2007) The Role of Intracellular Calcium and RhoA in Neuronal Migration. Science’s Signal Transduction Knowledge Environment, 2007, pe62.
[307] Rakic, P. and Komuro, H. (1995) The Role of Receptor/Channel Activity in Neuronal Cell Migration. Journal of Neurobiology, 26, 299-315.
http://dx.doi.org/10.1002/neu.480260303
[308] Berger, M.J. (1998) Neuronal Calcium Signaling. Neuron, 21, 13-26.
http://dx.doi.org/10.1016/S0896-6273(00) 80510-3
[309] Rosenberg, S.S. and Spitzer, N.C. (2011) Calcium Signaling in Neuronal Development. Cold Spring Harbour Perspective in Biology, 3, a004259.
http://dx.doi.org/10.1101/cshperspect.a004259
[310] Fadeel, B. and Xue, D. (2009) The Ins and Outs of Phospholipid Asymmetry in the Plasma Membrane: Roles in Health and Disease. Critical Reviews in Biochemistry and Molecular Biology, 44, 264-277.
http://dx.doi.org/10.1080/10409230903193307
[311] Barenholz, Y. (2004) Sphingomyelin and Cholesterol: From Membrane Biophysics and Rafts to Potential Medical Applications. Subcellular Biochemistry, 37, 167-215.
http://dx.doi.org/10.1007/978-1-4757-5806-1_5
[312] Viani, P., Cervato, G., Marchesini, S. and Cestaro, B. (1986) Fluorospectroscopic Studies of Mixtures of Distearoylphosphatidylcholine and Sulfatides with Defined Fatty Acid Compositions. Chemistry and Physics Lipids, 39, 41-51.
http://dx.doi.org/10.1016/0009-3084(86) 90098-8
[313] Nybond, S., Björkqvist, J., Slotte, J.P. and Ramstedt, B. (2007) Sulfatide Exhibits Calcium Dependent Stabilization of Sphingomyelin/Cholesterol Domains in Bilayer Membranes. Chemistry and Physics of Lipids, 149, S36.
http://dx.doi.org/10.1016/j.chemphyslip.2007.06.081
[314] Han, X., Holtzman, D.M., McKeel Jr., D.W., Kelley, J. and Morris, J.C. (2002) Substantial Sulfatide Deficiency and Ceramide Elevation in Very Early Alzheimer’s Disease: Potential Role in Disease Pathogenesis. Journal of Neurochemistry, 82, 809-818.
http://dx.doi.org/10.1046/j.1471-4159.2002.00997.x
[315] Han, X., Cheng, H., Fryer, J.D., Fagan, A.M. and Holtzman, D.M. (2003) Novel Role for Apolipoprotein E in the Central Nervous System. Modulation of Sulfatide Content. Journal of Biological Chemistry, 278, 8043-8051.
http://dx.doi.org/10.1074/jbc.M212340200
[316] Berntson, Z., Hansson, E., Rönnbäck, L. and Fredman, P. (1998) Intracellular Sulfatide Expression in a Subpopulation of Astrocytes in Primary Cultures. Journal of Neuroscience Research, 52, 559-568.
http://dx.doi.org/10.1002/(SICI) 1097-4547(19980601) 52:5<559::AID-JNR8>3.0.CO;2-B
[317] Takahashi, T and Suzuki, T. (2012) Role of Sulfatide in Normal and Pathological Cells and Tissues. Journal of Lipid Research, 53, 1437-1450.
http://dx.doi.org/10.1194/jlr.R026682
[318] Zeng, Y and Han, X. (2008) Sulfatides Facilitate Apolipoprotein E-Mediated Amyloid-β Peptideclearance through an Endocytotic Pathway. Journal of Neurochemistry, 106, 1275-1286.
http://dx.doi.org/10.1111/j.1471-4159.2008.05481.x
[319] Buschard, K., Høy, M., Bokvist, K., Olsen, H.L., Madsbad, S., Fredman, P., et al. (2002) Sulphatide Controls Insulin Secretion by Modulation of ATP-Sensitive K+-Channel Activity and Ca2+-Dependent Exocytosis in Rat Pancreatic Beta-Cells. Diabetes, 51, 2514-2521.
http://dx.doi.org/10.2337/diabetes.51.8.2514
[320] Chi, S. and Qi, Z. (2006) Regulatory Effect of Sulphatides on BKCa Channels. British Journal of Pharmacology, 149, 1031-1038.
http://dx.doi.org/10.1038/sj.bjp.0706947
[321] Kim, W.T., Rioult, M.G. and Cornell-Bell, A.H. (1994) Glutamate-Induced Calcium Signaling in Astrocytes.Glia, 11, 173-184.
http://dx.doi.org/10.1002/glia.440110211
[322] Yagi, K., Onaka, T. and Yoshida, A. (1998) Role of NMDA Receptors in the Emotional Memory Associated with Neuroendocrine Responses to Conditioned Fear Stimuli in the Rat. Neuroscience Research, 30, 279-286.
http://dx.doi.org/10.1016/S0168-0102(98) 00008-X
[323] Talantovaa, M., Sanz-Blasco, S., Zhang, X., Xia, P., Akhtar, M.W., Okamoto, S., et al. (2013) Aβ Induces Astrocytic Glutamate Release, Extrasynaptic NMDA Receptor Activation, and Synaptic Loss. Proceedings of the National Academy of Sciences of the United States of America, Early Edition.
[324] Parpura, V. and Haydon, P.G. (2000) Physiological Astrocytic Calcium Levels Stimulate Glutamate Release to Modulate Adjacent Neurons. Proceedings of the National Academy of Sciences of the United States of America, 97, 8629-8634.
http://dx.doi.org/10.1073/pnas.97.15.8629
[325] Randal, R.B. and Thayer, S.A. (1992) Glutamate-Induced Calcium Transient Triggers Delayed Calcium Overload and Neurotoxicity in Rat Hippocampal Neurons. The Journal of Neuroscience, 12, 1882-l895.
[326] Lipton, S.A. and Nicotera, P. (1998) Calcium, Free Radicals and Excitotoxins in Neuronal Apoptosis. Cell Calcium, 23, 165-171.
http://dx.doi.org/10.1016/S0143-4160(98) 90115-4
[327] Kessels, H.W., Nabavi, S. and Malinow, R. (2013) Metabotropic NMDA Receptor Function Is Required for β-Amyloid-Induced Synaptic Depression. Proceedings of the National Academy of Sciences of the United States of America, 110, 4033-4038.
[328] Zipfel, G.F. (2000) Neuronal Apoptosis after CNS Injury: The Roles of Glutamate and Calcium. Journal of Neurotrauma, 17, 857-869.
http://dx.doi.org/10.1089/neu.2000.17.857
[329] Butche, A.J., Torrecilla, I., Young, K.W., Kong, K.C., Mistry, S.C., Bottrill, A.R., et al. (2009) N-Methyl-D-aspartate Receptors Mediate the Phosphorylation and Desensitization of Muscarinic Receptors in Cerebellar Granule Neurons. The Journal of Biological Chemistry, 284, 17147-17156.
http://dx.doi.org/10.1074/jbc.M901031200
[330] Lu, W.Y., Xiong, Z.G., Lei, S., Orser, B.A., Dudek, E., Browning, M.D., et al. (1999) G-Protein-Coupled Receptors Act via Protein Kinase C and Src to Regulate NMDA Receptors. Nature Neuroscience, 2, 331-338.
http://dx.doi.org/10.1038/7243
[331] Lee, F.S. (2003) Novel Crosstalk between G Protein-Coupled Receptors and NMDA Receptors. Experimental Neurology, 183, 269-272.
http://dx.doi.org/10.1016/S0014-4886(03) 00249-8
[332] Qiu, Z., Crutcherb, K.A., Hymana, B.T. and Rebeck, G.W. (2003) ApoE Isoforms Affect Neuronal N-methyl-D-as-partate Calcium Responses and Toxicity via Receptor-Mediated Processes. Neuroscience, 122, 291-303.
http://dx.doi.org/10.1016/j.neuroscience.2003.08.017
[333] Caruso, S., Agnello, C., Campo, M.G. and Nicoletti, F. (1993) Oxytocin Reduces the Activity of N-methyl-D-aspartate Receptors in Cultured Neurons. Journal of Endocrinology Investigation, 16, 921-924.
http://dx.doi.org/10.1007/BF03348959
[334] Brayne, C., Gao, L. and Matthews, F. (2005) Challenges in the Epidemiological Investigation of the Relationships between Physical Activity, Obesity, Diabetes, Dementia and Depression. Neurobiology of Aging, 26, 6-10.
http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.030
[335] Convit, A. (2005) Links between Cognitive Impairment in Insulin Resistance: An Explanatory Model. Neurobiology of Aging, 26, 31-35.
http://dx.doi.org/10.1016/j.neurobiolaging.2005.09.018
[336] Greenwood, C.E. and Winocur, G. (2005) High-Fat Diets, Insulin Resistance and Declining Cognitive Function. Neurobiology of Aging, 26, 42-45.
http://dx.doi.org/10.1016/j.neurobiolaging.2005.08.017
[337] Brand-Miller, J., Hayne, S., Petocz, P. and Colagiuri, S. (2003) Low-Glycemic Index Diets in the Management of Diabetes: A Meta-Analysis of Randomized Controlled Trials. Diabetes Care, 26, 2261-2267.
http://dx.doi.org/10.2337/diacare.26.8.2261
[338] Brand-Miller, J.C. (2003) Glycemic Load and Chronic Disease. Nutrition Reviews, 61, S49-S55.
http://dx.doi.org/10.1301/nr.2003.may.S49-S55
[339] Dosunmu, R., Wu, J., Basha, R. and Zawia, N.H. (2007) Environmental and Dietary Risk Factors in Alzheimer’s Disease. Expert Review of Neurotherapeutics, 7, 887-900.
http://dx.doi.org/10.1586/14737175.7.7.887
[340] Schiepers, O.J., de Groot, R.H.M., Jolles, J. van Boxtel, M.P.J. (2010) Fish Consumption, Not Fatty Acid Status, Is Related to Quality of Life in a Healthy Population. Prostaglandins, Leukotrienes and Essential Fatty Acids, 83, 31-35.
http://dx.doi.org/10.1016/j.plefa.2010.02.030
[341] Horrocks, L.A. and Farooqui, A.A. (2004) Docosahexaenoic Acid in the Diet: Its Importance in Maintenance and Restoration of Neural Membrane Function. Prostaglandins, Leukotrienes and Essential Fatty Acids, 70, 361-372.
http://dx.doi.org/10.1016/j.plefa.2003.12.011
[342] Montuschi, P., Barnes, P. and Roberts2nd, L.J. (2007) Insights into Oxidative Stress: The Isoprostanes. Current Medicine Chemistry, 14, 703-717.
[343] Oster, T. and Pillot, T. (2010) Docosahexaenoic Acid and Synaptic Protection in Alzheimer’s Disease Mice. Biochimica Biophysica Acta (BBA), Molecular and Cell Biology of Lipids, 1801, 791-798.
http://dx.doi.org/10.1016/j.bbalip.2010.02.011
[344] Simopoulos, A.P. (2008) The Importance of the Omega-6/Omega-3 Fatty Acid Ratio in Cardiovascular Disease and Other Chronic Diseases. Experimental Biology Medicine (Maywood), 233, 674-688.
http://dx.doi.org/10.3181/0711-MR-311
[345] Davidson, M.H. (2006) Mechanisms for the Hypotriglyceridemic Effect of Marine Omega-3 Fatty Acids. American Journal of Cardiology, 98, 27-33.
http://dx.doi.org/10.1016/j.amjcard.2005.12.024
[346] Denechaud, P.D., Dentin, R., Girard, J. and Postic, C. (2008) Role of ChREBP in Hepatic Steatosis and Insulin Resistance. FEBS Letters, 582, 68-73.
http://dx.doi.org/10.1016/j.febslet.2007.07.084
[347] Brisson, C.D. and Andrew, R.D. (2012) A Neuronal Population in Hypothalamus That Dramatically Resists Acute Ischemic Injury Compared to Neocortex. Journal of Neurophysiology, 108, 419-430.
[348] Radak, D., Resanovic, I. and Isenovic, E.R. (2013) Changes in Hypothalamus-Pituitary-Adrenal Axis Following Transient Ischemic Attack. Angiology, Epub Ahead of Print.
[349] Larsson, S.C, Orsini, N. and Wolk, A. (2013) Dietary Calcium Intake and Risk of Stroke: A Dose-Response Meta-Analysis. The American Journal of Clinical Nutrition, 97, 951-957.
http://dx.doi.org/10.3945/ajcn.112.052449
[350] Li, K., Kaaks, R., Linseisen, J. and Rohrmann, S. (2012) Associations of Dietary Calcium Intake and Calcium Supplementation with Myocardial Infarction and Stroke Risk and Overall Cardiovascular Mortality in the Heidelberg Cohort of the European Prospective Investigation into Cancer and Nutrition Study (EPIC-Heidelberg). Heart, 98, 920-925.
http://dx.doi.org/10.1136/heartjnl-2011-301345
[351] Heaney, R.P. and Barger-Lux, M.J. (1994) Low Calcium Intake: The Culprit in Many Chronic Diseases. Journal of Dairy Science, 77, 1155-1160.
http://dx.doi.org/10.3168/jds.S0022-0302(94) 77052-1
[352] Nones, J., Stipursky, J., Costa, S.L. and Gomes, F.C.A. (2010) Flavonoids and Astrocytes Crosstalking: Implications for Brain Development and Pathology. Neurochemistry Research, 35, 955-996.
http://dx.doi.org/10.1007/s11064-010-0144-0
[353] Sharma, V., Mishra, M., Ghosh, S., Tewari, R., Basu, A., Seth, P., et al. (2007) Modulation of Interleukin-1β Mediated Inflammatory Response in Human Astrocytes by Flavonoids: Implications in Neuroprotection. Brain Research Bulletin, 73, 55-63.
http://dx.doi.org/10.1016/j.brainresbull.2007.01.016
[354] Silva, A.R., Pinheiro, A.M., Souza, C.S., Freitas, S.R.V.B., Vasconcellos, V., Freire, S.M., et al. (2008) The Flavonoid Rutin Induces Astrocyte and Microglia Activation and Regulates TNF-Alpha and NO Release in Primary Glial Cell Cultures. Cell Biology Toxicology, 24, 75-86.
http://dx.doi.org/10.1007/s10565-007-9017-y
[355] Xu, S.L., Bi, C.W., Choi, R.C., Zhu, K.Y., Miernisha, A., Dong, T.T., et al. (2013) Flavonoids Induce the Synthesis and Secretion of Neurotrophic Factors in Cultured Rat Astrocytes: A Signaling Response Mediated by Estrogen Receptor. Evidence-Based Complementary and Alternative Medicine, 2013, Article ID127075.
[356] Martins, I.J. and Fernando, W.M.A.D.B. (2014) High Fibre Diets and Alzheimer’s Disease.Food and Nutrition Sciences (Diet and Disease), 5, 410-424.
http://dx.doi.org/10.4236/fns.2014.54049
[357] Ono, K., Yoshiike, Y., Takashima, A, Hasegawa, K., Naiki, H. and Yamada, M. (2003) Potent Anti-Amyloidogenic and Fibril-Destabilizing Effects of Polyphenols in Vitro: Implications for the Prevention and Therapeutics of Alzheimer’s Disease. Journal of Neurochemistry, 87, 172-181.
http://dx.doi.org/10.1046/j.1471-4159.2003.01976.x
[358] Choi, Y.J., Kim, T.D., Paik, S.R., Jeong, K.J. and Jung, S.H. (2008) Molecular Simulations for Anti-Amyloidogenic Effect of Flavonoid Myricetin Exerted against Alzheimer’s β-Amyloid Fibrils Formation. Bulletin of the Korean Chemistry Society, 29, 1505-1509.
http://dx.doi.org/10.5012/bkcs.2008.29.8.1505
[359] Hu, Y., Yang, Y., Yu, Y., Wen, G., Shang, N., Zhuang, W., et al. (2013) Synthesis and Identification of New Flavonoids Targeting Liver X Receptor β Involved Pathway as Potential Facilitators of Aβ Clearance with Reduced Lipid Accumulation. Journal of Medicinal Chemistry, 56, 6033-6053.
http://dx.doi.org/10.1021/jm301913k
[360] Jin, C.H., Shin, E.J., Park, J.B., Jang, C.G., Li, Z., Kim, M.S., et al. (2009) Fustin Flavonoid Attenuates Beta-Amyloid (1-42) -Induced Learning Impairment. Journal of Neuroscience Research, 87, 3658-3670.
http://dx.doi.org/10.1002/jnr.22159
[361] Jadeja, R.N. and Devkar, R.V. (2014) Polyphenols in Human Health and Disease. Polyphenols in Chronic Diseases and their Mechanisms of Action. Chapter 47, Polyphenols and Flavonoids in Controlling Non-Alcoholic Steatohepatitis, 1, 615-623.
[362] Zhang, S., Zheng, L., Dong, D., Xu, L., Yin, L., Qi, Y., et al. (2013) Effects of Flavonoids from Rosa laevigata Michx Fruit against High-Fat Diet-Induced Non-Alcoholic Fatty Liver Disease in Rats. Food Chemistry, 141, 2108-2116.
http://dx.doi.org/10.1016/j.foodchem.2013.05.019
[363] Phachonpai, W., Wattanathorn, J., Muchimapura, S., Tong-Un, T. and Preechagoon, D. (2010) Neuroprotective Effect of Quercetin Encapsulated Liposomes: A Novel Therapeutic Strategy against Alzheimer’s Disease. American Journal of Applied Sciences, 7, 480-485.
http://dx.doi.org/10.3844/ajassp.2010.480.485
[364] Cassidy, A., Rimm, E.B., O’Reilly, é.J., Logroscino, G., Kay, C., Chiuve, S.E., et al. (2012) Dietary Flavonoids and Risk of Stroke in Women. Stroke, 43, 946-951.
http://dx.doi.org/10.1161/STROKEAHA.111.637835
[365] Sriraksa, N., Wattanathorn, J., Muchimapura, S., Tiamkao, S., Brown, K. and Chaisiwamongkol, K. (2012 ) Cognitive-Enhancing Effect of Quercetin in a Rat Model of Parkinson’s Disease Induced by 6-Hydroxydopamine.Evidence-Based Complementary and Alternative Medicine, 2012, Article ID: 823206.
http://dx.doi.org/10.1155/2012/823206
[366] Horáková, L. (2011) Flavonoids in Prevention of Diseases with Respect to Modulation of Ca-Pump Function. Interdisciplinary Toxicology, 4, 114-124.
http://dx.doi.org/10.2478/v10102-011-0019-5
[367] van der Heide, D., Kastelijn, J. and Schrödervan der Elst, J.P. (2003) Flavonoids and Thyroid Disease. BioFactors, 19, 113-119.
http://dx.doi.org/10.1002/biof.5520190303
[368] Santos, M.C., Gonçalves, C.F.L., Vaisman, M., Ferreira, A.C.F. and de Carvalho, D.P. (2011) Impact of Flavonoids on Thyroid Function. Food and Chemical Toxicology, 49, 2495-5012.
http://dx.doi.org/10.1016/j.fct.2011.06.074
[369] Giuliani, C., et al. (2013) The Flavonoid Quercetin Inhibits Thyroid Function in Rats. Endocrinology Review, 34.
[370] Giuliani, C., Noguchi, Y., Harii, N., Napolitano, G., Tatone, D., Bucci, I., et al. (2008) The Flavonoid Quercetin Regulates Growth and Gene Expression in Rat FRTL-5 Thyroid Cells. Endocrinology, 149, 84-92.
http://dx.doi.org/10.1210/en.2007-0618
[371] Soleas, G.J. (1998) Quercetin and p-Coumaric Acid Concentrations in Commercial Wines. American Journal of Enology and Viticulture, 49, 142-115.
[372] Squizzato A., Gerdes, V.E.A., Brandjes, D.P.M., Büller, H.R. and Stam, J. (2005) Thyroid Diseases and Cerebrovascular Disease. Stroke, 36, 2302-2310.
http://dx.doi.org/10.1161/01.STR.0000181772.78492.07
[373] Baker, D.M. (2007) Thyroid Diseases and Stroke. In: Baker, D.M., Ed., Stroke Prevention in Clinical Practice, Springer, London, 113-114.
[374] Mafrica, F. and Fodale, V. (2008) Thyroid Function, Alzheimer’s Disease and Postoperative Cognitive Dysfunction: A Tale of Dangerous Liaisons? Journal of Alzheimer’s Disease, 14, 95-105.
[375] Franco, M., Chávez, E. and Pérez-Méndez, O. (2011) Pleiotropic Effects of Thyroid Hormones: Learning from Hypothyroidism. Journal of Thyroid Research, 2011, Article ID: 321030.
http://dx.doi.org/10.4061/2011/321030
[376] Davis, P.J., Davis, F.B. and Mousa, S.A. (2009) Thyroid Hormone-Induced Angiogenesis. Current Cardiology Review, 5, 12-16.
[377] Christmann, M. and Kaina, B. (2013) Transcriptional Regulation of Human DNA Repairgenes Following Genotoxic Stress: Trigger Mechanisms, Inducible Responses and Genotoxic Adaptation. Nucleic Acids Research, 41, 8403-8420.
http://dx.doi.org/10.1093/nar/gkt635
[378] Jalili, M., Pati, S., Rath, B., Bjørklund, G. and Singh, R.B. (2013) Effect of Diet and Nutrients on Molecular Mechanism of Gene Expression Mediated by Nuclear Receptor and Epigenetic Modulation. The Open Nutraceuticals Journal, 6, 27-34.
[379] Pardee, K., Necakov, A.S. and Krause, H. (2011) Nuclear Receptors: Small Molecule Sensors That Coordinate Growth, Metabolism and Reproduction. Subcellular Biochemistry, 52, 123-153.
http://dx.doi.org/10.1007/978-90-481-9069-0_6
[380] Petegnief, V. and Planas, A.M. (2013) SIRT1 Regulation Modulates Stroke Outcome. Translational Stroke Research, 4, 663-671.
http://dx.doi.org/10.1007/s12975-013-0277-y
[381] Clark, D., Tuor, U.I., Thompson, R., Institoris, A., Kulynych, A., Zhang, X., et al. (2012) Protection against Recurrent Stroke with Resveratrol: Endothelial Protection. PLoS ONE, 7, e47792.
http://dx.doi.org/10.1371/journal.pone.0047792
[382] Brown, B.M., Peiffer, J.J., Sohrabi, H.R., Mondal, A., Gupta, V.B., Rainey-Smith, S.R., et al. (2012) Intense Physical Activity Is Associated with Cognitive Performance in the Elderly. Translational Psychiatry, 2, e191.
http://dx.doi.org/10.1038/tp.2012.118                                                                                    eww141104lx

The Value of Pig Manure as a Source of Nutrients for Semi-Intensive Culture of Nile Tilapia in Ponds (A Review)

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51015#.VFGhU1fHRK0

ABSTRACT

Growing global needs for food call for substantial increases in protein production in coming years, and for diligent conservation efforts. Manures from farm animals have been viewed both as a re-source and as a waste product, but they are critically important sources of nutrients for organic and integrated farming and for traditional Asian aquaculture. Given constraints on livestock production and capture fisheries, careful development of the aquaculture industry is a necessity. The production volume and market share of tilapia are advancing extremely rapidly, and so too is the proliferation of misinformation and controversy. Culture and feeding practices differ widely, but feeding is usually recognized as the single largest cost to producers. Traditional Asian integrated farming practices involve the use of manures and other farm wastes to promote algae and zoo-plankton production, serving as a sole or supplemental nutrient source to the food chain that supports tilapia growout. Tilapia also ingest manures. The efficient use of nutrients from manures can have multiple benefits to integrated terrestrial agriculture and aquaculture, as long as product safety and quality are not compromised. With efficient use, handling of manures is simplified, fish production costs are reduced, fish nutrition can be improved, and potentially polluting materials are cycled constructively on integrated farms. Consumer and press reactions to the use of farm manures in food production can be highly polarized. Published responses cover a range of extremes, from enthusiastic endorsement to volatile reactions and outright rejection; in some areas this practice is considered to be more of a “PR (Public Relations) problem” than a health hazard. The perception in online public media that tilapia coming from ponds fertilized with manure are heavily contaminated with pathogens has not been supported by evidence. The perspectives of farmers in two major tilapia production areas (China and the Philippines) are included.

Cite this paper

Brown, C. , Yang, T. , Fitzsimmons, K. and Bolivar, R. (2014) The Value of Pig Manure as a Source of Nutrients for Semi-Intensive Culture of Nile Tilapia in Ponds (A Review). Agricultural Sciences, 5, 1182-1193. doi: 10.4236/as.2014.512128.

References

[1] UNDESA (United Nations, Department of Economic and Social Affairs, Population Division) (2013) World Population Prospects: The 2012 Revision, Highlights and Advance Tables. United Nations, New York.
[2] FAO (United Nations Food and Agriculture Organization) (2012) The State of World Fisheries and Aquaculture. 2012 FAO Fisheries Department, Food and Agriculture Organization of the United Nations, Rome.
[3] FDA (US Food and Drug Administration) (2014) Fish: What Pregnant Women and Parents Should Know US Food and Drug Administration, FDA and EPA Issue Draft Updated Advice for Fish Consumption.
http://www.fda.gov/food/foodborneillnesscontaminants/metals/ucm393070.htm
[4] Larsen, J. and Roney, J.M. (2013) Farmed Fish Production Overtakes Beef.
http://www.earth-policy.org/plan_b_updates/2013/update114
[5] Gormaz, J.G., Fry, J.P., Erazo, M., and Love, D.C. (2014) Public Health Perspectives on Aquaculture. Current Environmental Health Reports.
http://link.springer.com/article/10.1007%2Fs40572-014-0018-8#page-1
[6] FAO (United Nations Food and Agriculture Organization) (2014) Conservation Agriculture.
http://www.fao.org/ag/ca/
[7] Hobbs, P.R., Sayre, K. and Gupta, R. (2008) The Role of Conservation Agriculture in Sustainable Agriculture. Philoshophical Transactions of the Royal Society B: Biological Sciences, 363, 543-555.
http://dx.doi.org/10.1098/rstb.2007.2169
[8] Kirchmann, H., Thorvaldsson, G. (2000) Challenging Targets for Future Agriculture. European Journal of Agronomy, 12, 145-161.
http://dx.doi.org/10.1016/S1161-0301(99)00053-2
[9] Flagg, T.A. and Mobrand, L.E. (2010) Conservation Aquaculture Approaches for Hatchery Reform. Bulletin of Fisheries Research Agency (Japan), 29, 85-91.
[10] Den Hartog L. (2004) Developments in Global Pig Production. Advances in Pork Production, 15, 17-24.
[11] Brown, L.R. (2006) Plan B 2.0: Rescuing a Planet under Stress and a Civilization in Trouble. W.W. Norton and Co., New York.
[12] Eshel, G., Shepon, A., Makov, T. and Milo, R. (2014) Land, Irrigation Water, Greenhouse Gas, and Reactive Nitrogen Burdens of Meat, Eggs, and Dairy Production in the United States. Proceedings of the National Academy of Sciences of the United States of America, 111, 11996-12001.
http://dx.doi.org/10.1073/pnas.1402183111
[13] Krapac, I.G., Dey, W.S., Roy, W.R., Smyth, C.A., Storment, E., Sargent, S.L. and Steele, J.D. (2002) Impacts of Swine Manure Pits on Groundwater Quality. Environmental Pollution, 120, 475-492.
http://dx.doi.org/10.1016/S0269-7491(02)00115-X
[14] Brown, S.B., Ikenberry, C.D., Soupir, M.L., Bisinger, J. and Russell, J.R. (2014) Predicting Time Cattle Spend in Streams to Quantify Direct Deposition of Manure for TMDL Development. Applied Engineering in Agriculture, 30, 187-195.
[15] FAO (United Nations Food and Agriculture Organization) (2006) Livestock’s Long Shadow—Environmental Issues and Options.
http://www.fao.org/docrep/010/a0701e/a0701e00.HTM
[16] Gerber, P., Wassenaar, T., Rosales, M., Castel, V. and Steinfeld, H. (2007) Environmental Impacts of a Changing Livestock Production: Overview and Discussion for a Comparative Assessment with Other Food Production Sectors. In: Bartley, D.M., Brugere, C., Soto, D., Gerber, P. and Harvey, B., Eds., Comparative Assessment of the Environmental Costs of Aquaculture and Other Food Production Sectors: Methods for Meaningful Comparisons, FAO/WFT Expert Workshop, Vancouver, 24-28 April 2006, 37-54.
[17] Green, B.W. and Duke III, C.B. (2006) Pond Production. In: Lim, C.E. and Webster, C.D., Eds., Tilapia Biology, Culture, and Nutrition, Food Products Press, New York, 253-288.
[18] Boyd, C.E. (2006) Management of Bottom Soil Condition and Pond Water and Effluent Quality. In: Lim, C.E. and Webster, C.D., Eds., Tilapia Biology, Culture, and Nutrition, Food Products Press, New York, 449-467.
[19] Fitzsimmons, K. (2006) Prospect and Potential for Global Production. In: Lim, C.E. and Webster, C.D., Eds., Tilapia Biology, Culture, and Nutrition, Food Products Press, New York, 51-72.
[20] EPA (US Environmental Protection Agency) (2012) Ag-101. Poultry Production.
http://www.epa.gov/oecaagct/ag101/printpoultry.html#table
[21] Josupeit, H. (2005) World Market of Tilapia. GLOBEFISH Research Programme, Vol. 79, FAO, Rome.
[22] Josupeit, H. (2010) World Supply and Demand of Tilapia. FAO, Rome.
[23] Mader, S.S. (1996) Biology. 5th Edition, W. C. Brown, Dubuque.
[24] Waite, R., Beveridge, M., Brummett, R., Castine, S., Chaiyawannakarn, N., Kaushik, S., Mungkung, R., Nawapakpilai, S. and Phillips, M. (2014) Working Paper, Installment 5 of Creating a Sustainable Food Future. Improving Productivity and Environmental Performance of Aquaculture. World Resources Institute, Washington DC.
[25] Cressey, D. (2009) Aquaculture: Future Fish. Nature, 458, 398-400.
http://dx.doi.org/10.1038/458398a
[26] Rosenthal, E. (2011) Another Side of Tilapia, The Perfect Factory Fish. The New York Times.
http://www.nytimes.com/2011/05/02/science/earth/02tilapia.html?pagewanted=all&_r=0
[27] Paxton, H. (2010) The Effects of Selective Breeding on the Architectural Properties of the Pelvic Limb in Broiler Chickens: A Comparative Study across Modern and Ancestral Populations. Journal of Anatomy, 217, 153-166.
[28] Wideman, R.F., Rhoads, D., Erf, G. and Anthony, N. (2013) Pulmonary Arterial Hypertension (Ascites Syndrome) in Broilers: A Review. Poultry Science, 92, 64-83.
http://dx.doi.org/10.3382/ps.2012-02745
[29] Ponzoni, R.W., Nguyen, H.N. and Khaw, H.L. (2006) Importance and Implementation of Simple and Advanced Selective Breeding Programs for Aquaculture Species in Developing Countries. In: Proceedings of the 8th World Congress on Genetics Applied to Livestock Production, Belo Horizonte, 13-18 August 2006.
[30] Ridha, M.T. (2011) Evaluation of Monosex Culture of GIFT and Non-Improved Strains of Nile Tilapia Oreochromis niloticus in Recirculating Tanks. International Aquatic Research, 3, 189-195.
[31] Yosef, S. (2009) Farming the Aquatic Chicken: Improved Tilapia in the Philippines. In: Spielman, D.J. and Pandya-Lorch, R., Eds., Millions Fed: Proven Successes in Agricultural Development, International Food Policy Research Institute, Washington DC, Chapter 18.
[32] ADB (Asian Development Bank) (2005) An Evaluation of Small-Scale Freshwater Rural Aquaculture Development for Poverty Reduction. 164 p.
http://www.adb.org/sites/default/files/pub/2005/Fresh-Water.pdf
[33] Gupta, M.V. and Acosta, B.O. (2004) From Drawing Board to Dining Table: The Success Story of the GIFT Project. Naga, Worldfish Center Quarterly, 27, 4-14.
[34] Ezeafurukwe, C.F., Osuagwu, L.E. and Ahaotu, E.O. (2013) Effect of Artificial Feed and Fertilization of Ponds on Growth and Body Composition of Genetically Improved Farmed Tilapia. International Journal of Agriculture and Bioscience, 2, 160-163.
[35] Ahmed, N., Young, J.A., Dey, M.M. and Muir, J.F. (2011) From Production to Consumption: A Case of Tilapia Marketing Systems in Bangladesh. Aquaculture International.
https://www.researchgate.net/publication/257519497_From_production_to_consumption
_a_case_study_of_tilapia_marketing_systems_in_Bangladesh
[36] Bolivar, R.B., Jimenez, E.B.T. and Brown, C.L. (2006) Alternate-Day Feeding Strategy for Nile Tilapia Grow out in the Philippines: Marginal Cost-Revenue Analyses. North American Journal of Aquaculture, 68, 192-197.
http://dx.doi.org/10.1577/A05-012.1
[37] Lim, C.E., Webster, C.D. and Li, M.H. (2006) Feeding Practices. In: Lim, C.E. and Webster, C.D., Eds., Tilapia Biology, Culture, and Nutrition, Food Products Press, New York, 547-559.
[38] Hopkins, K.D. and Cruz, E.M. (1982) The ICLARM-CLSU Integrated Animal-Fish Farming Project: Final Report. ICLARM Technical Reports 5, International Center for Living Aquatic Resources Management, Makati.
[39] Ogello, E.O., Mlingi, F.T. and Munguti, J.M. (2013) Can Integrated Livestock-fish Culture be a Solution to East Africa’s Food Insecurity? A Review. African Journal of Food, Agriculture, Nutrition and Development, 13, 8058-8076.
[40] Chastain, J.P., Camberato, J.J., Albrecht, J.E. and Adams, J. (2003) Swine Manure Production and Nutrient Content. Chapter 3a. In: Confined Animal Manure Managers Certification Program Manual B Swine Version 3, Clemson University Cooperative Extension Service.
[41] Diana, J. (2012) Some Principles of Pond Fertilization for Nile Tilapia Using Organic and Inorganic Inputs. In: Mischke, C.C., Ed., Aquaculture Pond Fertilization: Impacts of Nutrient Input on Production, 1st Edition, John Wiley and Sons, Inc., Hoboken.
http://dx.doi.org/10.1002/9781118329443.ch12
[42] Guedes, A.C. and Malcata, F.X. (2012) Nutritional Value and Uses of Microalgae in Aquaculture. In: Muchlisin, Z., Ed., Aquaculture, InTech.
http://www.intechopen.com/books/aquaculture/nutritional-value-and-uses-of
-microalgae-in-aquaculture
[43] Brown, C.L., Vera Cruz, E.M., Bolivar, R.B. and Borski, R.J. (2012) Chapter 3. Production, Growth, and Insulin-Like Growth Factor-1 (IGF-I) Gene Expression as an Instantaneous Growth Indicator in Nile Tilapia Oreochromis niloticus (L.). In: Marco, S. and Liu, Z., Eds., Functional Genomics in Aquaculture, Wiley-Blackwell, Inc., Ames, 79-89.
[44] Brown, M.R., Jeffrey, S.W., Volkman, J.K. and Dunstan, G.A. (1997) Nutritional Properties of Microalgae for Mariculture. Aquaculture, 151, 315-331.
http://dx.doi.org/10.1016/S0044-8486(96)01501-3
[45] Treece, G.D. (2000) Zooplankton Culture. In: Stickney, R.R., Ed., Encyclopedia of Aquaculture, John Wiley and Sons, New York, 1037-1044.
[46] Nash, C.E. (2011) The History of Aquaculture. Wiley Blackwell, Ames, Iowa.
http://dx.doi.org/10.1002/9780470958971
[47] Neori, A. (2011) “Green Water” Microalgae: The Leading Sector in Aquaculture. Journal of Applied Phycology, 23, 143-149.
http://dx.doi.org/10.1007/s10811-010-9531-9
[48] Tendencia, E.A. and dela Peña, M. (2003) Investigation of Some Components of the Greenwater System Which Makes It Effective in the Initial Control of Luminous Bacteria. Aquaculture, 218, 115-119.
http://dx.doi.org/10.1016/S0044-8486(02)00524-0
[49] De Schryver, P., Defoirdt, T. and Sorgeloos, P. (2014) Early Mortality Syndrome Outbreaks: A Microbial Management Issue in Shrimp Farming? PLoS Pathogens, 10, e1003919.
http://dx.doi.org/10.1371/journal.ppat.1003919
[50] io-Po, G.D., Leaño, E.M., Peñaranda, M.D., Villa-Franco, A.U., Sombito, C.D. and Guanzon Jr., N.G. (2005) Anti-Luminous Vibrio Factors Associated with the “Green Water” Grow-Out Culture of the Tiger Shrimp Penaeus monodon. Aquaculture, 250, 1-7.
http://dx.doi.org/10.1016/j.aquaculture.2005.01.029
[51] FAO (United Nations Food and Agriculture Organization) (1977) China: Recycling or Organic Wastes in Agriculture. Report of the FAO Study Tour to the People’s Republic of China, 28 April-24 May 1977. FAO Soils Bulletin 40.
[52] Conte, F.S. (2000) Pond Fertilisation: Initiating an Algal Bloom. Western Regional Aquaculture Center, WRAC Publication No. 104 02-2000, Seattle.
[53] Ayaad, E.A. and Hassouna, M.E. (2003) Response of Nile Tilapia to Dietary Animal Protein Level and Poultry Manure Fertilizer Level in Earthern Ponds. Egyptian Journal of Aquatic Biology and Fisheries, 7, 213-227.
[54] Green, B.W. (1992) Substitution of Organic Manure for Pelleted Feed in Tilapia Production. Aquaculture, 101, 213-222.
http://dx.doi.org/10.1016/0044-8486(92)90025-G
[55] Picchietti, M. (2104) Be Careful What You Wish For. Aquaculture Magazine, 70-73.
[56] Edwards, P. (1985) Pigs over Fish-Ponds. Pig International, 15, 8-10.
[57] FDA (US Food and Drug Administration) (1998) Guidance for Industry: Guide to Minimize Microbial Food Safety Hazards for Fresh Fruits and Vegetables.
http://www.fda.gov/food/guidanceregulation/guidancedocumentsregulatoryin
formation/ucm064574.htm
[58] Charles, R. (2013) Organic Farmers Bash FDA Restrictions on Manure Use. NPR Morning Edition.
http://www.npr.org/blogs/thesalt/2013/11/21/246386290/organic-farmers-bash-
fda-restrictions-on-manure-use
[59] Changi, W.Y.B. and Ouyang, H. (1988) Dynamics of Dissolved Oxygen and Vertical Circulation in Fish Ponds. Aquaculture, 74, 263-276.
http://dx.doi.org/10.1016/0044-8486(88)90370-5
[60] Netzfrauen (2014) Igitt—In Asienge züchtete Fische warden mittels Hühner—und Schweinekot aufgezogen.
http://netzfrauen.org/2014/04/15/igitt-asien-gezuechtete-fische-werden-mittels-
huehner-und-schweinekot-aufgezogen/
[61] FAO (United Nations Food and Agriculture Organization) (1997) Towards Safe and Effective Use of Chemicals in Coastal Aquaculture. Joint Group of Experts on the Scientific Aspects of Marine Environmental Protection, GESAMP Reports and Studies No. 65, FAO, Rome.
http://www.jodc.go.jp/info/ioc_doc/GESAMP/r65e.pdf
[62] Weaver, K., Ivester, P., Chilton, J., Wilson, M., Pandey, P. and Chilton, F. (2008) The Content of Favorable and Unfavorable Polyunsaturated Fatty Acids Found in Commonly Eaten Fish. Journal of the American Dietetic Association, 108, 1178-1185.
http://dx.doi.org/10.1016/j.jada.2008.04.023
[63] Mozaffarian, D., Micha, R. and Wallace, S. (2010) Effects on Coronary Heart Disease of Increasing Polyunsaturated Fat in Place of Saturated Fat: A Systemic Review and Meta-Analysis of Randomized Control Trials. PLoS Medicine, 7, e1000252.
http://dx.doi.org/10.1371/journal.pmed.1000252
[64] Cook, N.R., Cutler, J.A., Obarzanek, E., Buring, J.E., Rexrode, K.M., Kumanvika, S.K., Appel, L.J. and Whelton, P.K. (2007) Long Term Effects of Dietary Sodium Reduction on Cardiovascular Disease Outcomes: Observational Follow-up of the Trials of Hypertension Prevention (TOHP). British Medical Journal, 334, 885-888.
http://dx.doi.org/10.1136/bmj.39147.604896.55
[65] Bush, S.R., Belton, B., Hall, D., Vandergeest, P., Murray, F.J., Ponte, S., Oosterveer, P., Islam, M.S., Mol, A.P.J., Hatanaka, M., Kruijssen, F., Ha, T.T.T., Little, D.C. and Kusumawati, R. (2013) Certify Sustainable Aquaculture? Science, 341, 1067-1068.
http://dx.doi.org/10.1126/science.1237314
[66] Monterey Bay Aquarium (2014) West Coast Consumer Guide. Seafood Watch.
http://www.seafoodwatch.org/cr/cr_seafoodwatch/download.aspx
[67] Snopes.com (2014) Do Not Eat Tilapia! http://www.snopes.com/food/warnings/tilapia.asp
[68] Greenpeace, U.K. (2012) What Fish Can I Eat?
http://www.greenpeace.org.uk/oceans/what-you-can-do/better-buys-what-fish-can-I-eat
[69] Allsopp, M., Johnston, P. and Santillo, D. (2008) Challenging the Aquaculture Industry on Sustainability.
http://www.greenpeace.org/international/en/publications/reports/challenging-the-aquaculture/
[70] Allsopp, M., Santillo, D. and Dorey, C. (2013) Sustainability in Aquaculture: Present Problems and Sustainable Solutions. In: Chircop, A., Coffen-Smout, S. and McConnell, A., Eds., Ocean Yearbook 27, Sponsored by the International Oceans Institute and the Marine Environmental Law Institute of Dalhousie University, Martinus Nijhoff Publishers, Leiden/Boston, 291-322.
[71] Szeremeta, A., Winkler, L., Blake, F. and Lembo, P., Eds. (2010) Organic Aquaculture—EU Regulations (EC) 834/2007, (EC) 889/2008, (EC) 710/2009—Background, Assessment, Interpretation. International Federation of Organic Agriculture Movements (IFOAM) EU Group, Brussels, CIHEAM/IAMB, Valenzno, Bari.
[72] Prein, M., Bergleiter, S., Ballauf, M., Brister, D., Halwart, M., Hongrat, K., Kahle, J., Lasner, T., Lem, A., Lev, O., Morrison, C., Shehadeh, Z., Stamer, A. and Wainberg, A.A. (2012) Organic Aquaculture: The Future of Expanding Niche Markets. In: Subasinghe, R.P., Arthur, J.R., Bartley, D.M., De Silva, S.S., Halwart, M., Hishamunda, N., Mohan, C.V. and Sorgeloos, P., Eds., Farming the Waters for People and Food. Proceedings of the Global Conference on Aquaculture 2010, Phuket, 22-25 September 2010, 549-567.
[73] Soil Association (2014) Organic Standards, Aquaculture Revision 17.2.
http://www.soilassociation.org/LinkClick.aspx?fileticket=pM14JxQtcs4%3D&tabid=353
[74] NOSB (National Organic Standards Board) (2008) Final Recommendation Livestock Committee. Proposed Organic Aquaculture Standards: Fish Feed and Related Management Issues.
http://www.ams.usda.gov/AMSv1.0/getfile?dDocName=STELPRDC5074508&acct=nosb
[75] Burden, D. (2009) The Organic Aquaculture Quandary. Ag Marketing Resource Center/USDA.
http://www.agmrc.org/commodities__products/aquaculture/the-organic-aquaculture-quandary
[76] Global Aquaculture Alliance (2014) Aquaculture Facility Certification Finfish and Crustacean Farms Best Aquaculture Practices Certification Standards, Guidelines.
http://www.gaalliance.org/bap/standards.php
[77] Boyd, C.E. (2004) Farm-Level Issues in Aquaculture Certification: Tilapia. Report Commissioned by WWF.
http://fisheries.tamu.edu/files/2013/09/Farm-Level-Issues-in-Aquaculture-Certification-Tilapia.pdf
[78] Courtenay Jr., W.R. and Robins, C.P. (1973) Exotic Aquatic Organisms in Florida with Emphasis on Fishes: A Review and Recommendations. Transactions of the American Fisheries Society, 102, 1-12.
http://dx.doi.org/10.1577/1548-8659(1973)102<1:EAOIFW>2.0.CO;2
[79] Legner, E.F. and Medved, R.A. (1973) Influence of Tilapia mossambica (Peters), T. zillii (Gervais) (Cichlidae), Molliensia latipinna le Sueur (Poeciliidae) on Pond Populations of Mosquitoes and Chironomid Midges. Mosquito News, 33, 354-364.
[80] IUCN (International Union for Conservation of Nature) Species Survival Commission (2008) View 100 of the World’s Worst Invasive Alien Species. Invasive Species Specialist Group.
http://www.issg.org/worst100_species.html
[81] WWF (World Wildlife Fund) (2011) Better Management Practices for Tilapia Aquaculture: A Tool to Assist with Compliance to the International Standards for Responsible Tilapia Aquaculture. Version 1.0.
http://www.asc-aqua.org/upload/ASC%20Tilapia%20Better%20Management%20Practices_v1.0.pdf
[82] Aquaculture Stewardship Council (2012) ASC Tilapia Standard Version 1.0 Jan 2012.
http://www.asc-aqua.org/upload/ASC%20Tilapia%20Standard_v1.0.pdf                                       eww141030lx

Advancing Teacher Skills while Developing New Learning Materials for Professional Health Education

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=48781#.VDdNDVfHRK0

ABSTRACT

This paper describes the experience of a PhD candidate during during her teaching training period within the Human nutrition course in a Brazilian public university. The experience provided the doctoral candidate the opportunity to study and deepen knowledge in the field of educational psychology, including learning theories, instructional theories and instructional design. As a result, the Human Nutrition Course was restructured and new learning material supported by Information and Communication Technologies was produced and used during the semester. As a result, it was reported by students a greater level of satisfaction and learning. The supervised practice in teaching was perceived as an important and useful moment by the doctoral candidate as it enabled interactions between research and teaching, the improvement of classes, media and learning strategies. It also enabled a greater comprehension of the professors’ role and its importance in the educational process. Finally, the paper discusses new ICT skills recommended in teaching in undergraduate health courses.

Cite this paper

Torres, A. , Abbad, G. and Bousquet-Santos, K. (2014) Advancing Teacher Skills while Developing New Learning Materials for Professional Health Education. Creative Education, 5, 1254-1259. doi: 10.4236/ce.2014.514141.

References

[1] Abbad, G. S., Zerbini, T., & Borges-Ferreira, M. F. (2012). Medidas de reação a cursospresenciais. In G. S. Abbad et al. (Ed.), Medidas de avaliaçãoemtreinamento, desenvolvimento e educação: Ferramentasparagestão de pessoas. Porto Alegre: Artmed.
[2] Abbad, G. S., Zerbini, T., Carvalho, R. S., & Meneses, P. P. M. (2006). Planejamento Instrucionalem TD & E. In J. E. Borges-Andrade, G. S. Abbad, & L. Mourão (Eds.), Treinamento, Desenvolvimento e Educaçãoem Organizações e Trabalho: fundamentospara a gestão de pessoas (pp. 289-231). Porto Alegre: Artmed.
[3] Borges-Andrade, J. E. (1982). Avaliaçãosomativa de sistemasinstrucionais: Integração de trêspropostas. Tecnologia Educacional, 11, 29-39.
[4] Brasil (2012). Ministério da Saúde. Coordenação Geral da Política de Alimentação e Nutrição. Guiaalimentarpara a populaçãobrasileira: Promovendoaalimentaçãosaudável. Brasília: Ministério da Saúde.
http://dtr2001.saude.gov.br/editora/produtos/livros/pdf/05_1109_M.pdf
[5] Cebeci, Z., & Tekdal, M. (2006). Using Podcasts as Audio Learning Objetcts. Interdisciplinary Journal of Knowledge and Learning Objects, 2, 47-57.
[6] Chamliam, H. C. (2003). Docêncianauniversidade: professoresinovadoresna USP. Cadernos de Pesquisa, 1, 41-64.
[7] Cook, D. A., Hamstra, S. J, Brydges, R., Zendejas, B., Szostek, J. H., Wang, A. T., Erwin, P. J., & Hatala, R. (2013). Comparative Effectiveness of Instructional Design Features in Simulation-Based Education: Systematic Review and Meta Analysis. Medical Teacher, 35, e867-e898.
http://dx.doi.org/10.3109/0142159X.2012.714886
[8] Hattie, J. (2003). Teachers Make a Difference. What Is the Research Evidence? (pp. 1-17) Australian Council for Educational Research Annual Conference on Building Teacher Quality. Auckland: University of Auckland.
https://cdn.auckland.ac.nz/assets/education/hattie/docs/teachers-make-a-difference-ACER-(2003).
pdf
[9] Perrenoud, P. (2000). Deznovascompetênciasparaensinar (162 p). Porto Alegre: Artmed.
[10] Torres, A. A. L., Abbad, G. S., & Bousquet-Santos, K. (2013). Validation of a Questionnaire on ICTs (Information and Communication Technologies) Skills of Undergraduate Health Students in Brazil. Psychology Research, 3, 512-517.
[11] UNESCO. Division of Higher Education (2002). Information and Communication Technologies in Education: A Curriculum for Schools and Programme of Teacher Development (150 p).
[12] UNESCO (2014). Estándares de competência en TIC paradocentes (28 p).
http://www.oei.es/tic/UNESCOEstandaresDocentes.pdf
[13] Zerbini, T. (2007). Avaliação da Transferência de treinamentoemcurso a distancia. Doctorate Thesis, Brasília: University of Brasília.                                                                                                                                eww141010lx

Nutrient Intakes from Food of Lactating Women Do Not Meet Many Dietary Recommendations Important for Infant Development and Maternal Health

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=49517#.VBJTtaN2W3M

Nutrient Intakes from Food of Lactating Women Do Not Meet Many Dietary Recommendations Important for Infant Development and Maternal Health.

ABSTRACT

Literature describing dietary intakes of lactating mothers in the United States (US) is limited and none of the existing studies attempts to identify whether dietary shortcomings of lactating mothers are distinct from those of women of childbearing age in the US. The first objective of this observational study was to comprehensively analyze the dietary intakes of lactating mothers in the US to determine whether nutrient intakes from food were sufficient to meet recommendations. The second objective was to compare these intakes to those of women of childbearing age in the US. Weekly 3-day food records were collected from subjects for six weeks in 2012-2013. Subject mean daily intakes of food groups, macronutrients, vitamins, minerals, carotenoids, and specific fats including omega-3 and omega-6 fatty acids were determined and compared to daily recommendations. Intakes were compared to US women using the 2009-2010 National Health and Nutrition Examination Survey. Fruit, vegetable, and dairy intakes of mothers were ≤50% of recommendations, resulting in 12 of 26 analyzed vitamins or minerals including potassium, iodine, chromium, choline, and vitamins A, D, and E having mean daily intakes below the Estimated Average Requirement. Vitamin D intake of subjects was 18% lower than US women, while most other nutrients showed intakes within 10% of each other between populations. Lactating women are not meeting the increased dietary needs associated with breastfeeding, supporting education initiatives and interventions specifically tailored to breastfeeding populations to increase intakes of vitamin D, vitamin E, iodine, biotin, carotenoids, and polyunsaturated fatty acids from food.

Cite this paper

Pratt, N. , Durham, H. and Sherry, C. (2014) Nutrient Intakes from Food of Lactating Women Do Not Meet Many Dietary Recommendations Important for Infant Development and Maternal Health. Food and Nutrition Sciences, 5, 1644-1651. doi: 10.4236/fns.2014.517177.
References

 

[1] National Research Council (1991) Nutrition during Lactation. The National Academies Press, Washington DC.
[2] Johnston, M.L.S., Noble, L., Szucs, K. and Viehmann, L. (2012) Breastfeeding and the Use of Human Milk. Pediatrics, 129, e827-e841.
http://dx.doi.org/10.1542/peds.2011-3552
[3] US Congress (1990) National Nutrition Monitoring and Related Research Act of 1990. US G.P.O., Washington DC.
[4] US Department of Agriculture ARS (2012) Total Nutrient Intakes: Percent Reporting and Mean Amounts of Selected Vitamins and Minerals from Food, by Family Income (as % of Federal Poverty Threshold) and Age. US Department of Agriculture ARS, Beltsville.
[5] Bougma, K., Aboud, F.E., Harding, K.B. and Marquis, G.S. (2013) Iodine and Mental Development of Children 5 Years Old and Under: A Systematic Review and Meta-Analysis. Nutrients, 5, 1384-1416.
http://dx.doi.org/10.3390/nu5041384
[6] Antonakou, A., Chiou, A., Andrikopoulos, N.K., Bakoula, C. and Matalas, A.L. (2011) Breast Milk Tocopherol Con tent during the First Six Months in Exclusively Breastfeeding Greek Women. European Journal of Nutrition, 50, 195-202.
http://dx.doi.org/10.1007/s00394-010-0129-4
[7] Sherwood, K.L., Houghton, L.A., Tarasuk, V. and O’Connor, D.L. (2006) One-Third of Pregnant and Lactating Women May Not Be Meeting Their Folate Requirements from Diet Alone Based on Mandated Levels of Folic Acid Fortification. Journal of Nutrition, 136, 2820-2826.
[8] Lovelady, C.A., Stephenson, K.G., Kuppler, K.M. and Williams, J.P. (2006) The Effects of Dieting on Food and Nutrient Intake of Lactating Women. Journal of the American Dietetic Association, 106, 908-912.
http://dx.doi.org/10.1016/j.jada.2006.03.007
[9] Durham, H.A., Lovelady, C.A., Brouwer, R.J., Krause, K.M. and Ostbye, T. (2011) Comparison of Dietary Intake of Overweight Postpartum Mothers Practicing Breastfeeding or Formula Feeding. Journal of the American Dietetic Association, 111, 67-74.
http://dx.doi.org/10.1016/j.jada.2010.10.001
[10] Mackey, A.D., Picciano, M.F., Mitchell, D.C. and Smiciklas-Wright, H. (1998) Self-Selected Diets of Lactating Women Often Fail to Meet Dietary Recommendations. Journal of the American Dietetic Association, 98, 297-302.
http://dx.doi.org/10.1016/S0002-8223(98)00070-4
[11] Sherry, C.L., Oliver, J.S., Renzi, L.M. and Marriage, B.J. (2014) Lutein Supplementation Increases Breast Milk and Plasma Lutein Concentrations in Lactating Women and Infant Plasma Concentrations but Does Not Impact Other Carotenoids. Journal of Nutrition, 144, 1256-1263.
http://dx.doi.org/10.3945/jn.114.192914
[12] Pereira, M.A., Rifas-Shiman, S.L., Kleinman, K.P., Rich-Edwards, J.W., Peterson, K.E. and Gillman, M.W. (2007) Predictors of Change in Physical Activity during and after Pregnancy: Project Viva. American Journal of Preventive Medicine, 32, 312-319.
http://dx.doi.org/10.1016/j.amepre.2006.12.017
[13] Sebastian, R.S., Enns, C.W. and Goldman, J.D. (2011) MyPyramid Intakes and Snacking Patterns of US Adults: What We Eat in America, NHANES 2007-2008. Food Surveys Research Group, Agriculture USDo.
[14] National Research Council (2005) Dietary Reference Intakes for Energy, Carbohydrate, Fiber, Fat, Fatty Acids, Cho- lesterol, Protein and Amino Acids (Macronutrients). The National Academies Press, Washington DC.
[15] Kris-Etherton, P.M., Grieger, J.A. and Etherton, T.D. (2009) Dietary Reference Intakes for DHA and EPA. Prostaglan dins, Leukotrienes and Essential Fatty Acids, 81, 99-104.
http://dx.doi.org/10.1016/j.plefa.2009.05.011
[16] Koletzko, B., Lien, E., Agostoni, C., Bohles, H., Campoy, C., Cetin, I., et al. (2008) The Roles of Long-Chain Polyunsaturated Fatty Acids in Pregnancy, Lactation and Infancy: Review of Current Knowledge and Consensus Recommen dations. Journal of Perinatal Medicine, 36, 5-14.
http://dx.doi.org/10.1515/JPM.2008.001
[17] Simopoulos, A.P., Leaf, A. and Salem Jr., N. (1999) Workshop on the Essentiality of and Recommended Dietary Intakes for Omega-6 and Omega-3 FATTY Acids. Asia Pacific Journal of Clinical Nutrition, 8, 300-301.
http://dx.doi.org/10.1046/j.1440-6047.1999.00123.x
[18] Carlson, S.J., Fallon, E.M., Kalish, B.T., Gura, K.M. and Puder, M. (2013) The Role of the Omega-3 Fatty Acid DHA in the Human Life Cycle. Journal of Parenteral and Enteral Nutrition, 37, 15-22.
http://dx.doi.org/10.1177/0148607112467821
[19] National Research Council (2000) Dietary Reference Intakes for Vitamin C, Vitamin E, Selenium, and Carotenoids. The National Academies Press, Washington DC.
[20] Murphy, M.M., Barraj, L.M., Herman, D., Bi, X., Cheatham, R. and Randolph, R.K. (2012) Phytonutrient Intake by Adults in the United States in Relation to Fruit and Vegetable Consumption. Journal of the Academy of Nutrition and Dietetics, 112, 222-229.
http://dx.doi.org/10.1016/j.jada.2011.08.044
[21] Kruger, C.L., Murphy, M., DeFreitas, Z., Pfannkuch, F. and Heimbach, J. (2002) An Innovative Approach to the Determination of Safety for a Dietary Ingredient Derived from a New Source: Case Study Using a Crystalline Lutein Pro duct. Food and Chemical Toxicology, 40, 1535-1549.
http://dx.doi.org/10.1016/S0278-6915(02)00131-X
[22] Clinton, S.K. (1998) Lycopene: Chemistry, Biology, and Implications for Human Health and Disease. Nutrition Reviews, 56, 35-51.
[23] Zimmer, J.P. and Hammond Jr., B.R. (2007) Possible Influences of Lutein and Zeaxanthin on the Developing Retina. Clinical Ophthalmology, 1, 25-35.
[24] McGuire, S., US Department of Agriculture and US Department of Health and Human Services (2011) Dietary Guide- lines for Americans, 2010. Advances in Nutrition, 2, 293-294.
[25] Caldwell, K.L., Pan, Y., Mortensen, M.E., Makhmudov, A., Merrill, L. and Moye, J. (2013) Iodine Status in Pregnant Women in the National Children’s Study and in US Women (15 – 44 Years), National Health and Nutrition Examination Survey 2005-2010. Thyroid, 23, 927-937.
http://dx.doi.org/10.1089/thy.2013.0012
[26] Zimmermann, M.B. (2007) The Adverse Effects of Mild-to-Moderate Iodine Deficiency during Pregnancy and Childhood: A Review. Thyroid, 17, 829-835.
http://dx.doi.org/10.1089/thy.2007.0108
[27] Vieth, R., Bischoff-Ferrari, H., Boucher, B.J., Dawson-Hughes, B., Garland, C.F., Heaney, R.P., et al. (2007) The Urgent Need to Recommend an Intake of Vitamin D That Is Effective. American Journal of Clinical Nutrition, 85, 649- 650.
[28] Picciano, M.F. and McGuire, M.K. (2009) Use of Dietary Supplements by Pregnant and Lactating Women in North America. American Journal of Clinical Nutrition, 89, 663S-667S.