Characterization of Chromium in Contaminated Soil Studied by SEM, EDS,XRD and Mossbauer Spectroscopy

Read  full  paper  at:http://file.scirp.org/Html/20515.html

Chromium is important from the environmental point of view since its behavior and toxicity properties depend on its oxidation states. The Cr(VI) concentration in wells of Buenavista, Guanajuato, Mexico, is higher than the permissible level of it for drinking water, 0.05mg/L. The objective of this research was to determine the elution of chromium with deionized water from contaminated soil samples and to determine the oxidation state of Fe, which is an element that can limit the mobility of chromium. These results will be considered in a pump and treat remediation scheme for this site. Chromium contaminated soil samples were obtained from an industrial area of Leon, Guanajuato, México. O, Na, Mg, K, Al, Si, Ca, Cr and Fe were found in the chemical analysis by EDS of the contaminated samples. In the soluble species only O, Na, S, Ca and Cr were found. The oxidation state of iron was determined by Mossbauer spectroscopy (MS) in the soil contaminated with chromium, in the soil washed with deionizer water and also in the soluble samples. CaCrO4 was found in the soluble fraction, as a single crystalline phase by XRD. MS indicated that at least two iron species were present, one insoluble and the other sparingly soluble.

Cite this paper

L. Reyes-Gutiérrez, E. Romero-Guzmán, A. Cabral-Prieto and R. Rodríguez-Castillo, “Characterization of Chromium in Contaminated Soil Studied by SEM, EDS,XRD and Mossbauer Spectroscopy,” Journal of Minerals and Materials Characterization and Engineering, Vol. 7 No. 1, 2008, pp. 59-70.

References

[1] González, C. A., Neri, R., Quinónez, A. and Mendoza, J., 1980, “Posibles danos a la salud de una comunidad abierta, por sales de Cr en el ambiente: Fisiología y patología del Cr.” Sa. Púb.Méx. XXII, p. 85.
[2] Gutiérrez, R. M., Castillo, B. S. and Aguilera, E., 1989, “Chromate contamination north of México: proposal for a solution.” UNEP, Industry and Environmental, p . 51.
[3] Reyes-Gutiérrez, L. R., 1998, “Factores que controlan la dispersión de compuestos de Cr en un acuífero de conductividad hidráulica variable.” Tesis Maestría UNAM. Posgrado en Geofísica, 125 p.
[4] Villalobos, P. M., Gutiérrez, R. M., and Castillo, B. S., 1987, “A study of the factors that influence the interference of Fe(III) in the colourimetric analysis of Cr(VI) in polluted waters.” Rev. Int. de Contam. Ambient. Vol. 3, pp. 7-23.
[5] Albert, L., 1988, “Curso Básico de toxicología ambiental: Cromo.” 2a edición. Editorial LIMUSA S.A. de C. V., pp. 171-183.
[6] Bartlett, R. and Bruce, J., 1979, “Behavior of Chromium in soils: III. Oxidation.” J. Environ. Quality, Vol. 8, pp. 31-35.
[7] Grove, J. H. and Ellis, B.G., 1980, “Extractable Iron and Manganese as Related to Soil pH and Applied Chromium.” Soil Science Society of America Journal.Vol. 44, pp. 243-246.
[8] Mattuck, R. and Nikolaidis, P., 1996, “Chromium mobility in freshwater wetlands.” Journal of Contaminant Hydrology, Vol. 23, pp. 213-232.
[9] Bennett, T. A., 1997, “An in situ reactive barrier for the treatment of Cr(VI) and tricloroethylene in groundwater”, Department of Earth Sciences, University of Waterloo.
[10] Blowes, D. and Ptacek, C., 2002. 3rd Intern. Conf. on Groundwater Quality Research, in:Proceedings of the Subsurface Restoration Conf., June 21-24, Dallas Texas, p. 214.
[11] Rodríguez, R. and Armienta, A., 1995, “Groundwater chromium pollution in the Rio Turbio Valley, Mexico: Use of pollutants as chemical tracers.” Geofís. Internal., Vol. 34, pp. 417-426.
[12] Armienta, A., Rodríguez, R., Ceniceros, N., Juárez, F. and Cruz, O., 1996, “Distribution, Origin and Fate of Chromium in soils in Guanajuato, México.” Environmental Pollution, Vol. 91,pp. 391-397.
[13] Castelán, A. and Villegas, J., 1996, “Control Estratigráfico en la dispersión de Compuestos de Cromo en el Valle de León, Gto.” ESIA-IPN, México. Bachelor Degree Thesis.
[14] Thomas, G. W., 1982, “Exchangeable Cations. Methods of Soil Analysis, Part 2, Chemical and Microbiological Properties”, Second Edition. A.L. Page (editor). Agronomy, No. 9, Part 2, American Society of Agronomy, Soil Science Society of America, Madison, Wl: 159-165.
[15] Bartlett, R. J., 1991, “Chromium Cycling in Soils: Links, Gaps, and Methods.” Environmental Health Perspectives, Vol. 92, pp. 17-24.
[16] James, B. R., 1994, “Hexavalent chromium solubility and reduction in alkaline soils enriched with chromite ore processing residue.” J. Environ. Quality, Vol. 23, pp. 227-233.
[17] James, B. R., 1996, “The challenge of remediation chromium-contaminated soil.” Environmental Science & Technology,Vol. 30, pp. 248A-251A.
[18] Ramos-Leal, J. A., Durazo, J. González, M. T., Ramírez, G. A., Johannesson K. H., Cortés, A., 2003, “ Producción insostenible de un campo de pozos advertida por lo coincidente de la desmineralización y la profundización del agua subterránea.” En: 1 Congreso de Las Américas Sobre Geofísica Ambiental. Instituto Panamericano de Geografía e Historia. 20 al 24 de octubre, 2003. México, D. F.
[19] Bayliss, P., Sabina, S. A., Anderson, R., Cesbron, F., 1986, A Minerals Powder Diffraction File, Databook, International Centre for Diffraction, Editorial Staff, USA.
[20] Bajda, T., 2005, “Chromatite CaCrO4 in soil polluted with electroplating effluents, Zabierzów, Poland.” Science of the Total Environment, Vol. 336, pp. 269-274.
[21] Puigdomenech, I., 2004, MEDUSA: Make Equilibrium Diagrams Using Sophisticated Algoritms. http://www.inorg.kth.se/Research/Ignasi;/Index.html.                                     eww150204lx
[22] Rock, M. L., James, B. R., and Helz, G. R., 2001, “Hydrogen Peroxide effects on chromium oxidation state and solubility in four diverse, chromium-enriched soils.” Environmental Science & Technology, Vol 35, pp. 4054-4059.
Advertisements

Preparation and Characterization of Subsurface Silver Particulate Films on Polymer Blends of Polystyrene/Poly(2-vinylpyridine)/Poly(vinylpyrollidone)/Poly(4-vinylpyridine)

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53523#.VMdF_yzQrzE

ABSTRACT

Silver particulate thin films on softened polymer blends of Polystyrene (PS)/Poly(2-vinyl pyridine) (P2VP), PS/Poly(4-vinylpyridine) (P4VP), and Poly(vinylpyrollidone) (PVP)/P4VP at a rate of 0.4 nm/s held at a temperature of 457 K in vacuum of 8 × 10-6 Torr by evaporation are deposited. These silver films were characterized by their electrical behavior, optical properties and Scanning electron microscopy (SEM). Silver films deposited on softened PS, and PVP give rise to a very high room temperature resistance approaching that of the substrate resistance due to the formation of a highly agglomerated structure. On the other hand, silver films on softened P2VP and P4VP gives rise to a room temperature resistance in the range of tens to a few hundred MΩ/ which is desirable for device applications. Silver films on the composites of PS/P2VP, PS/P4VP and PVP/P4VP show resistances at room temperature. The optical and plasmonic response of Ag nanoparticles onto thin layers of blends shows encapsulation of nanoparticles. The electrical properties and SEM of silver nanoparticles on the thin layers of polymer blends indicate the formation of much smaller, narrower dispersion and wide size distribution.

Cite this paper

Pandey, P. (2015) Preparation and Characterization of Subsurface Silver Particulate Films on Polymer Blends of Polystyrene/Poly(2-vinylpyridine)/Poly(vinylpyrollidone)/Poly(4-vinylpyridine). Soft Nanoscience Letters, 5, 3-11. doi: 10.4236/snl.2015.51002.

References

[1] Yonzon, C.R., Stuart, D.A., Zhang, X., Mcfarland, A.D., Haynes, C.L. and Duyne, R.P.V. (2005) Towards Advanced Chemical and Biological Nanosensors—An Overview. Talanta, 67, 438-448.
http://dx.doi.org/10.1016/j.talanta.2005.06.039
[2] Son, W., et al. (2004) Preparation of Antimicrobial Ultrafine Cellulose Acetate Fibers with Silver Nanoparticles. Macromolecular Rapid Communications, 25, 1632-1637.
http://dx.doi.org/10.1002/marc.200400323
[3] Doty, R.C., et al. (2005) Stabilization and Functionalization of Metallic Nanoparticles. Chemistry of Materials, 17, 4630-4635.
http://dx.doi.org/10.1021/cm0508017
[4] Heilmann, A. (2002) Polymer Films with Embedded Metal Nanoparticles. Springler, Berlin.
[5] Mayer, A.B.R. (2001) Colloidal Metal Nanoparticles Dispersed in Amphiphilic Polymers. Polymers for Advanced Technologies, 12, 96-106.
http://dx.doi.org/10.1002/1099-1581(200101/02)12:1/2<96::AID-PAT943>3.0.CO;2-G
[6] Beecroft, L.L. (1997) Nanocomposite Materials for Optical Applications. Chemistry of Materials, 9, 1302-1317.
http://dx.doi.org/10.1021/cm960441a
[7] Caseri, W. (2000) Nanocomposites of Polymers and Metals or Semiconductors: Historical Background and Optical Properties Macromol. Rapid Communications, 21, 705-722.
http://dx.doi.org/10.1002/1521-3927(20000701)21:11<705::AID-MARC705>3.0.CO;2-3
[8] Eilers, H., Biswas, A., Pounds, T.D. and Norton, M.G. (2006) Teflon AF/Ag Nanocomposites with Tailored Optical Properties. Journal of Materials Research, 21, 2168-2171.
http://dx.doi.org/10.1557/jmr.2006.0267
[9] Wang, Y., Li, Y., Yang, S., Zhang, G., An, D., Wang, C., Yang, Q., Chen, X., Jing, X. and Wei, Y. (2006) A Convenient Route to Polyvinyl Pyrrolidone/Silver Nanocomposite by Electrospinning. Nanotechnology, 17, 3304-3307.
http://dx.doi.org/10.1088/0957-4484/17/13/037
[10] Bronstein, L.M., Sidorov, S.N. and Valetsky, P.M. (2004) Nanostructured Polymeric Systems as Nanoreactors for Nanoparticle Formation. Russian Chemical Reviews, 73, 501-515.
http://dx.doi.org/10.1070/RC2004v073n05ABEH000782
[11] Wang, X., Zuo, J., Keil, P. and Grundmeier, G. (2007) Comparing the Growth of PVD Silver Nanoparticles on Ultra Thin Fluorocarbon Plasma Polymer Films and Self-Assembled Fluoroalkyl Silane Monolayers. Nanotechnology, 18, 265303-265313.
http://dx.doi.org/10.1088/0957-4484/18/26/265303
[12] Kunz, M.S., Shull, K.R. and Kellock, A.J. (1992) Morphologies of Discontinuous Gold Films on Amorphous Polymer Substrates. Journal of Applied Physics, 72, 4458-4460.
http://dx.doi.org/10.1063/1.352362
[13] Rao, K.M., Pattabi, M., Sainkar, S.R., Lobo, A., Kulkarni, S.K., Uchil, J. and Sastry, M.S. (1999) Preparation and Characterization of Silver Particulate Structure Deposited on Softened Poly(4-vinylpyridine) Substrate. Journal of Physics D: Applied Physics, 32, 2327-2336.
http://dx.doi.org/10.1088/0022-3727/32/18/303
[14] Rao, K.M. and Pattabi, M. (2001) Effect of Polymer-Metal Particle Interaction on the Structure of Particulate Silver Films Formed on Softened Polymer Substrates. Journal of New Materials for Electrochemical Systems, 4, 11-15.
[15] Parashar, P. (2012) Electrical Behaviour of Discontinuous Silver Films Deposited on Compatible Polystyrene/Poly(2- vinylpyridine) Composite. Journal of Materials Science: Materials in Electronics, 23, 468-473.
http://dx.doi.org/10.1007/s10854-011-0418-6
[16] Hassell, T., Yoda, S., Howdle, S.M. and Brown, P.D. (2006) Microstructural Characterization of Silver/Polymer Nanocomposites Prepared Using Supercritical Carbon Dioxide. Journal of Physics: Conference Series, 26, 276-279.
[17] Parashar, P. (2012) Structural Properties of Silver Particulate Films Deposited on Softened Polymer Blends of Polystyrene/Poly (2-vinylpyridine). Journal of Materials Science: Materials in Electronics, 23, 1169-1173.
http://dx.doi.org/10.1007/s10854-011-0567-7
[18] Parashar, P., Ramakrishna, K., Ramaprasad, A.T. (2011) A Study on Compatibility of Polymer Blends of Polystyrene/Poly(4-vinylpyridine). Journal of Applied Polymer Science, 12, 1729-1735.
http://dx.doi.org/10.1002/app.33314
[19] Haoyan, W. and Eilers, H. (2008) Electrical Conductivity of Thin-Film Composites Containing Silver Nanoparticles Embedded in a Dielectric Fluoropolymer Matrix. Thin Solid Films, 517, 575-581.
http://dx.doi.org/10.1016/j.tsf.2008.06.093
[20] Kiesow, A., Morris, J.E., Radehaus, C. and Heilmann, A. (2003) Switching Behavior of Plasma Polymer Films Containing Silver Nanoparticles. Journal of Applied Physics, 94, 6988-6990.
http://dx.doi.org/10.1063/1.1622990
[21] Parashar, P., Pattabi, M. and Gurumurthy, S.C. (2009) Electrical Behaviour of Discontinuous Silver Films Deposited on Softened Polystyrene and Poly(4-vinylpyridine) Blends. Journal of Materials Science: Materials in Electronics, 20, 1182-1185.
http://dx.doi.org/10.1007/s10854-008-9848-1
[22] Rao, K.M., Pattabi, M., Mayya, K.S., Sainkar, S.R. and Sastry, M.S. (1997) Preparation and Characterization of Silver Particulate Films on Softened Polystyrene Substrates. Thin Solid Films, 310, 97-101.
http://dx.doi.org/10.1016/S0040-6090(97)00358-1
[23] Fritzsche, W., Porwol, H., Wiegand, A., Boronmann, S. and Khler, J.M. (1998) In-Situ Formation of Ag-Containing Nano-particles in Thin Polymer Film. Nanostructured Materials, 10, 89-97.
http://dx.doi.org/10.1016/S0965-9773(98)00023-3
[24] Akamatsu, K., Takei, S., Mizuhata, M., Kajinami, A., Deki, S., Fujii, M., Hayashi, S. and Yamamoto, K. (2000) Preparation and Characterization of Polymer Thin Films Containing Silver and Silver Sulfide Nanoparticles. Thin Solid Films, 359, 55-60.
http://dx.doi.org/10.1016/S0040-6090(99)00684-7
[25] Carotenuto, G. (2001) Synthesis and Characterization of Poly(N-vinylpyrrolidone) Filled by Monodispersed Silver Clusters with Controlled Size. Applied Organometallic Chemistry, 15, 344-351.
http://dx.doi.org/10.1002/aoc.165
[26] Kim, J.Y., Shin, D.H., Ihn, K.J. and Suh, K.D. (2003) Amphiphilic Polyurethane-co-Polystyrene Network Films Containing Silver Nanoparticles. Journal of Industrial and Engineering Chemistry, 9, 37-44.
[27] Heilmann, A., Quinten, M. and Werner, J. (1998) Optical Response of Thin Plasma-Polymer Films with Non-Spherical Silver Nanoparticles. The European Physical Journal B, 3, 455-461.
http://dx.doi.org/10.1007/s100510050335
[28] Takele, H., Greve, H., Pochstein, C., Zaporojtchenko, V. and Faupel, F. (2006) Plasmonic Properties of Ag Nanoclusters in Various Polymer Matrices. Nanotechnology, 17, 3499-3505.
http://dx.doi.org/10.1088/0957-4484/17/14/023
[29] Mandal, S., Arumgam, S.K., Pasricha, R. and Sastry, M. (2005) Silver Nanoparticles of Variable Morphology Synthesized in Aqueous Foams as Novel Templates. Bulletin of Materials Science, 28, 503-510.
http://dx.doi.org/10.1007/BF02711244
[30] Heilmann, A., Kiesov, A., Gruner, M. and Kreibig, U. (1999) Optical and Electrical Properties of Embedded Silver Nanoparticles at Low Temperatures. Thin Solid Films, 343-344, 175-178.
http://dx.doi.org/10.1016/S0040-6090(98)01599-5                                                              eww150127lx

Study of the (Ca1–xSrx) RuO3 System with Nano-Crystals Prepared by the Solid-State Reaction Method

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52962#.VK3shMnQrzE

ABSTRACT

We present a study of their structure, morphology, electrical and magnetic properties on the (Ca1<span “=””>–xSrx) RuO3 system for x = 0.0, 0.07, 0.10, 0.15 and 1.0. The samples were prepared by the solidstate reaction method in air at ambient pressure and heat in the 700℃ – 800℃ range for 48 h. By X-ray powder diffraction (XRD), we determine a solid solution until x = 0.15. Scanning electron microscopy (SEM) indicates that the particle size is 77 – 266 nm. The resistance measurements, as a function of temperature measurements from 7 to 300 K the (Ca1<span “=””>–xSrx) RuO3 system for x = 0.0, 0.07, 0.10, 0.15 and 1.0 show a metallic behaviour. We can even observe that the resistance of the samples is due to the partial substitution of Sr2+ ions and Ru ion valence. Finally, the sample x = 0.07 has a magnetization applied high field to 10 K, whereas that to 300 K does not have a magnetization.

Cite this paper

Quiroz, A. , Chavira, E. , Espinosa, J. , Palomino-Merino, R. , Marinero, E. , Nishioka, M. and García-Vázquez, V. (2015) Study of the (Ca1–xSrx) RuO3 System with Nano-Crystals Prepared by the Solid-State Reaction Method. Materials Sciences and Applications, 6, 16-22. doi: 10.4236/msa.2015.61003.

References

[1] Bauernfeind, L., Widder, W. and Braun, H.F. (1995) Ruthenium-Based Layered Cuprates RuSr2LnCu2O8 and RuSr2(Ln1+xCe1-x)Cu2O10 (LnSm, Eu and Gd). Physica C: Superconductivity, 254, 151-158.
http://dx.doi.org/10.1016/0921-4534(95)00574-9
[2] Bauernfeind, L., Widder, W. and Braun, H.F. (1996) Superconductors Consisting of CuO2 and RuO2 Layers. Journal of Low Temperature Physics, 105, 1605-1610.
http://dx.doi.org/10.1007/BF00753929
[3] Bernard, C., Tallon, J.L., Brucher, E. and Kremer, R.K. (2000) Evidence for a Bulk Meissner State in the Ferromagnetic Superconductor RuSr2GdCu2O8 from dc Magnetization. Physical Review B, 61, Article ID: R14960.
[4] Tallon, J.L., Bernhard, C., Bowden, M., Gilberd, P., Stoto, T., Pringle, D., et al. (1999) Coexisting Ferromagnetism and Superconductivity in Hybrid Rutheno-Cuprate Superconductors. IEEE Transactions on Applied Superconductivity, 9, 1696-1699.
http://dx.doi.org/10.1109/77.784779
[5] Park J., Oh, J.-S., Park, J.-H., Kim, D.M. and Eom, C.-B. (2004) Electronic Structure of Epitaxial (Sr,Ca)RuO3 Films Studied by Photoemission and X-Ray Absorption Spectroscopy. Physical Review B, 69, Article ID: 085108.
http://dx.doi.org/10.1103/PhysRevB.69.085108
[6] Maeno, Y., Hashimoto, H., Yoshida, K., Nishizaki, S., Fujita, T., Bednorz, J.G. and Lichtenberg, F. (1994) Superconductivity in a Layered Perovskite without Copper. Nature (London), 372, 532-534.
http://dx.doi.org/10.1038/372532a0
[7] Eom, C.B., Cava, R.J., Fleming, R.M., Phillips, J.M., van Dover, R.B., Marshall, J.H., Hus, J.W.P., Krajewski, J.J. and Peck Jr., W.F. (1992) Single-Crystal Epitaxial Thin Films of the Isotropic Metallic Oxides Sr1?xCax RuO3 (0 ≤ x ≤ 1). Science, 258, 1766.
http://dx.doi.org/10.1126/science.258.5089.1766
[8] Cox, P.A., Egdell, R.G., Goodenough, J.B., Hamnett, A. and Naish, C.C. (1983) The Metal-to-Semiconductor Transition in Ternary Ruthenium (IV) Oxides: A Study by Electron Spectroscopy. Journal of Physics C: Solid State Physics, 16, 6221.
http://dx.doi.org/10.1088/0022-3719/16/32/014
[9] Shepard, M., McCall, S., Cao, G. and Crow, J.E. (1997) Thermodynamic Properties of Perovskite ARuO3 (A = Ca, Sr, and Ba) Single Crystals. Journal of Applied Physics, 81, 4978.
http://dx.doi.org/10.1063/1.365018
[10] Felner, I., Asaf, U., Reich, S. and Tsabba, Y. (1999) Magnetic Properties of RSr2RuCu2O8+δ (R = Eu and Gd). Physica C: Superconductivity, 311, 163-171.
http://dx.doi.org/10.1016/S0921-4534(98)00642-X
[11] García-Vázquez, V., Pérez-Amaro, N., Canizo-Cabrera, A., Cumplido-Espíndola, B., Martínez-Hernández, R. and Abarca-Ramírez, M.A. (2001) Selected Error Sources in Resistance Measurements on Superconductors. Review of Scientific Instruments, 72, 3332.
http://dx.doi.org/10.1063/1.1386899
[12] http://www.qdusa.com
[13] Fumihiko, F. and Tsuda, N. (1994) On the Magnetism and Electronic Conduction of Itinerant Magnetic System Ca1-x SrxRuO3. Journal of the Physical Society of Japan, 63, 3798-3807.
http://dx.doi.org/10.1143/JPSJ.63.3798
[14] Rama Rao, M.V., Sathe, V.G., Sornadurai, D., Panigrahi, B. and Shripathi, T. (2001) Electronic Structure of ARuO3 (A = Ca, Sr and Ba) Compounds. Journal of Physics and Chemistry of Solids, 62, 797-806.
http://dx.doi.org/10.1016/S0022-3697(00)00262-6
[15] Takeda, T., Nagata, M., Kobayashi, H., Kanno, R., Kawamoto, Y., Takano, M., Kamiyama, T., Izumi, F. and Sleight, A.W. (1998) High-Pressure Synthesis, Crystal Structure, and Metal-Semiconductor Transitions in the Tl2Ru2O7–δ Pyrochlore. Journal of Solid State Chemistry, 140, 182-193.
[16] Shannon, R.D. (1976) Revised Effective Ionic Radii and Systematic Studies of Interatomic Distances in Halides and Chalcogenides. Acta Crystallographica A, 32, 751-767.
[17] He, T. and Cava, R.J. (2001) Disorder-Induced Ferromagnetism in CaRuO3. Physical Review B, 63, Article ID: 172403.
http://dx.doi.org/10.1103/PhysRevB.63.172403
[18] Gan, Q., Rao, R.A., Eom, C.B., Garrett, J.L. and Lee, M. (1998) Direct Measurement of Strain Effects on Magnetic and Electrical Properties of Epitaxial SrRuO3 Thin Films. Applied Physics Letters, 72, 978-980.
http://dx.doi.org/10.1063/1.120603
[19] Cao, G., McCall, S., Shepard, M., Crow, J.E. and Guertin, R.P. (1997) Thermal, Magnetic, and Transport Properties of Single-Crystal Sr1–x CaxRuO3 (0 ≤ x ≤ 1.0). Physical Review B, 56, 321-329.
http://dx.doi.org/10.1103/PhysRevB.56.321?
[20] Shikano, M., Huang, T.K., Inaguma, Y., Itoh, M. and Nakamura, T. (1994) Pressure Dependence of the Magnetic Transition Temperature for Ferromagnetic SrRuO3. Solid State Communications, 90, 115-119.
http://dx.doi.org/10.1016/0038-1098(94)90942-3
[21] Mathieu, R., Asamitsu, A., Yamada, H., Takahashi, K.S., Kawasaki, M., Fang, Z., Nagaosa, N. and Tokura, Y. (2004) Scaling of the Anomalous Hall Effect in Sr1-xCaxRuO3. Physical Review Letters, 93, Article ID: 016602.
http://dx.doi.org/10.1103/PhysRevLett.93.016602
[22] Pi, L., Fan, E.-H., Xiao, Y. and Zhang, Y.-H. (2006) Magnetic and Electrical Transport Properties of Sr1–xLaxRuO3 (0 ≤ x ≤ 0.10). Chinese Physics Letters, 23, 2225-2228.
http://dx.doi.org/10.1088/0256-307X/23/8/072                                                                        eww150108lx

Microscopic Characterisation of Pinus sylvestris Cell Structures under Compression Loading

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52814

ABSTRACT

This study is mainly focused on the 3D mechanical cell deformations of 20 × 20 × 60 mm sized softwood specimens under 35 – 40 MPa compression loading at room temperature of 20?C. The moisture content of the specimens was 6% – 7%. The data of microscopic images were measured and compared in terms of the permanently degenerated individual cell structures each in micro-scale . 3D cell deformations of tissues were observed with a magnification of (×100) – (×1500) and in the range of 3.0 – 5.0 kV voltage under the SEM microscope. The specimens were examined under magnification and photographed before and after the compression loading applied parallel to the grain angles to the wood samples. Specimens were painted with gold liquid (12 × 12 × 12 mm sized specimens) in obtaining the SEM images. Under the SEM, these specimens were photographed and lengths between the cell walls ranged between 15 to 40 micrometers. In this study, relative deformations of pinewood cells were determined statistically considering the percentage permanent deformation under the compression loading. It was performed by using knowledge of structural mechanics, considering the measurement of permanent deformation in honeycomb-pinewood structure material.

Cite this paper

Günay, E. , Golmohammadi, H. and Kaya, Ş. (2014) Microscopic Characterisation of Pinus sylvestris Cell Structures under Compression Loading. Materials Sciences and Applications, 5, 1060-1073. doi: 10.4236/msa.2014.514109.

References

[1] Miksic, A., Myntti, M., Koivisto, J., Salminen, L. and Alava, M. (2013) Effect of Fatigue and Annual Rings’ Orientation on Mechanical Properties of Wood under Cross-Grain Uniaxial Compression. Wood Science and Technology, 47, 1117-1133.
http://dx.doi.org/10.1007/s00226-013-0561-8
[2] Hassel, B.I., Modén, C.S. and Berglund, L.A. (2009) Functional Gradient Effects Explain the Low Transverse Shear Modulus in Spruce Full Field Strain Data and a Micromechanics Model. Composites Science and Technology, 69, 2491-2496.
http://dx.doi.org/10.1016/j.compscitech.2009.06.025
[3] Modén, C.S. and Berglund, L.A. (2008) A Two-Phase Annual Ring Model of Transverse Anisotropy in Softwoods. Composites Science and Technology, 68, 3020-3026.
http://dx.doi.org/10.1016/j.compscitech.2008.06.022
[4] Lu, G., Lu, G.Q. and Xiao, Z.M. (1999) Mechanical Properties of Porous Materials. Journal of Porous Materials, 6, 359-368.
http://dx.doi.org/10.1023/A:1009669730778
[5] Madsen, B. and Gamstedt, E.K. (2013) Wood versus Plant Fibers: Similarities and Differences in Composite Applications. Advances in Materials Science and Engineering, 2013, Article ID: 564346.
[6] Fratzl, P., Burgert, I. and Keckes, J. (2004) Mechanical Model for the Deformation of the Wood Cell Wall. Zeitschrift fur Metallkunde Metallurgy & Metallurgical Engineering, 95, 579-584.
[7] Burgert, I., Keckes, J. and Fratzl, P. (2006) Mechanics of the Wood Cell Wall. In: Stokke, D.D. and Groom, L.H., Eds., Characterization of the Cellulosic Cell Wall, Wiley, Grand Lake, 30-37.
[8] Flores, E.S., Souza Neto, E.A. and Pearce, S.C. (2011) A Large Strain Computational Multi-Scale Model for the Dissipative Behaviour of Wood Cell-Wall. Computational Materials Science, 50, 1202-1211.
http://dx.doi.org/10.1016/j.commatsci.2010.11.023
[9] Qing, H. and Mishnaevsky Jr., L. (2010) 3D Multiscale Micromechanical Model of Wood: From Annual Rings to Microfibrils. International Journal of Solids and Structures, 47, 1253-1267.
http://dx.doi.org/10.1016/j.ijsolstr.2010.01.014
[10] Moëll, M.K. and Minoru Fujita, M. (2004) Fourier Transform Methods in Image Analysis of Compression Wood at the Cellular Level. IAWA Journal, 25, 311-324.
http://dx.doi.org/10.1163/22941932-90000368
[11] Kaya, S.T. (2007) Determination of the Failure Curve of Transversely Isotropic Fiber Composite Pinewood (Pinus Sylvestris) by the Help of Experimental Studies. M.Sc. Thesis, Gazi University, Institute of Science and Technology, Turkey.
[12] Wiedenhoeft, A. (2014) Structure and Function of Wood: Wood Handbook. Chapter 3, Forest Products Library.
http://www.fpl.fs.fed.us/documnts/fplgtr/fplgtr190/chapter_03.pdf.htm
[13] Esau, K. (1977) Anatomy of the Seed Plants. 2nd Edition, John Wiley & Sons Ltd, New York.
[14] Raven, P., Evert, R. and Eichhorn, S. (1999) Biology of Plants. 6th Edition, W.H. Freeman & Company, New York.
[15] Dickison, W. (2000) Integrative Plant Anatomy. Academic Press, New York.
[16] Côté, W.A. (1967) Wood Ultrastructure. University of Washington Press, Seattle.
[17] Josza, L.A. and Middleton, G.R. (1994) Wood Quality Attributes and Their Practical Implications. Forintek Canada Corp., 2655 East Mall, Vancouver BC Canada V6T 1W5.
[18] Logan, J.D. (2014) Sensitivity to Fundamental Wood Properties in the Metriguard Model 7200 HCLT and the CLT.
http://www.metriguard.com/fiber.htm
[19] Gardiner, B., Barnett, J., Saranpaa, P. and Gril, J. (2014) The Biology of Reaction Wood. (eBook) Springer, London.
http://www.springer.com/life+sciences/forestry/book/978-3-642-10813-6                    eww150105lx

Chemical and Morphological Study of PM10 Analysed by SEM-EDS

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52213#.VIj2csnQrzE

ABSTRACT

<span “=””>Single particle characterization can provide information on the evolution of size distribution and chemical composition of pollution aerosol. The work described the use of Scanning Electron Microscopy (SEM) combined with X-ray Dispersive Energy Spectrometry (EDS) to characterize inorganic atmospheric particles samples collected on PM10 filters from January 2013 to October 2013 from three zones within the city of Hermosillo, Sonora. Specimens were initially processed by separating the collected particles from the filters by means of submersing a 2 cm2 section of each filter into isopropilic alcohol within a test tube for 5 minutes. Then, an aliquot of the suspension was placed over a sample holder and into the SEM. The different elements found amongst individual particles were Al, Ba, Ca, Cl, Cr, Cu, Fe, K, Mg, Mn, Na, Pb, S, Si, Ti and U. The predominant elements are Al (17.10 At%), Si (10.17 At%), Ba (5.90 At%), Fe (5.45 At%) and U (2.32 At%). The particles were classified into groups based on morphology and elemental composition: particles of aluminosilicate, salts of sodium chloride, sulfates, metal particles, barium and uranium. These particles morphology and chemical composition, illustrate an abundance of natural elements within the zone. However, some of the elements presented are directly related with human activities, and are of much interest from the public health and environmental perspectives.

Cite this paper

Ramirez-Leal, R. , Valle-Martinez, M. and Cruz-Campas, M. (2014) Chemical and Morphological Study of PM10 Analysed by SEM-EDS. Open Journal of Air Pollution, 3, 121-129. doi: 10.4236/ojap.2014.34012.

References

[1] Bacci, P., Del Monte, M., Longhetto, A., Piano, A., Prodi, F., Redaelli, P., et al. (1983) Characterization of the Particulate Emission by a Large Oil Fuel Fired Power Plant. Journal of Aerosol Science, 14, 557-572.
http://dx.doi.org/10.1016/0021-8502(83)90011-3
[2] Ramirez-Leal, R., Esparza-Ponce, H. and Duarte-Moller, A. (2007) Characterization of Inorganic Atmospheric Particles in Air Quality Program with sem, tem and xas. Revista Mexicana de Fisica, 53, 102-107.
[3] Pope, C.A., Burnett, R.T., Thun, M.J., Calle, E.E., Krewski, D., Ito, K. and Thurston, G.D. (2002) Lung Cancer, Cardiopulmonary Mortality, and Long-Term Exposure to Fine Particulate Air Pollution. The Journal of the American Medical Association, 287, 1132-1141.
http://dx.doi.org/10.1001/jama.287.9.1132
[4] Berico, M., Luciani, A. and Formignani, M. (2007) Atmospheric Aerosol in an Urbana Area Measurement of tsp and pm10 Standards and Pulmonary Deposition Assessment. Atmospheric Environment, 31, 3659-3665.
http://dx.doi.org/10.1016/S1352-2310(97)00204-5
[5] Dockery, D.W. and Pope, C.A. (1994) Acute Respiratory Effects of Particulate Air Pollution. Annual Review of Public Health, 15, 107-132.
[6] Schwartz, J. (1994) Air Pollution and Daily Mortality: A Review and Meta Analysis. Environmental Research, 64, 36-52. http://dx.doi.org/10.1006/enrs.1994.1005
[7] Richards, R.J., Atkins, J., Marrs, T.C., Brown, R.F.R. and Masek, L.C. (1989) The Biochemical and Pathological Changes Produced by the Intratracheal Instillation of Certain Components of Zinc-Hexachloroethane Smoke. Toxicology, 54, 79-88. http://dx.doi.org/10.1016/0300-483X(89)90080-2
[8] Chung, W., Sharifi, V.N., Swithenbank, J., Ossamor, O. and Nolan, A. (2008) Characterisation of Airborne Particulate Matter in a City Environment. Journal of Modern Applied Science, 2, 17-32.
[9] Okada, K. and Kai, K. (2004) Atmospheric Mineral Particles Collected at Quira in the Taklamakan Desert, China. Atmospheric Environment, 38, 6927-6935.
http://dx.doi.org/10.1016/j.atmosenv.2004.03.078
[10] Zhai, Y.B., Fu, Z.M. and Wang, L.F. (2012) Characteristic, Composition, and Sources of TSP Investigated by HRTEM/EDS and ESEM/EDS. Environmental Monitoring and Assessment, 184, 6693-6707.
http://dx.doi.org/10.1007/s10661-011-2452-5
[11] Ariola, V., D’Alessandro, A., Lucarelli, F., Marcazzan, G., Mazzei, F., Nava, S., et al. (2006) Elemental Characterisation of PM10, PM2.5 and PM1 in the Town of Genova (Italy). Chemosphere, 62, 226-232.
http://dx.doi.org/10.1016/j.chemosphere.2005.05.004
[12] Querol, X., Alastuey, A., Puicercus, J.A., Mantilla, E., Ruiz, C.R., Lopez-Soler, A., Plana, F. and Juan, R. (1998) Seasonal Evolution of Suspended Particles around a Large Coal-Fired Power Station: Chemical Characterization. Atmospheric Environment, 30, 3557-3572.
http://dx.doi.org/10.1016/1352-2310(96)00108-2
[13] Brook, R.D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., et al. (2004) Air Pollution and Cardiovascular Disease: A Statement for Healthcare Professionals from the Expert Panel on Population and Prevention Science of the American Heart Association.
[14] Ramirez-Leal, R., et al. (2009) Elemental Chemical Composition, Size and Morphological Characterization of Individual Atmospheric Particles within an Air Quality Program. Microscopy and Microanalysis, 15, 1300-1301.
[15] Hays, D.M., Fine, M.P., Geron, D.C., Kleeman, J.M. and Gullett, K.B. (2005) Open Burning of Agricultural Biomass: Physical and Chemical Properties of Particle-Phase Emissions. Atmospheric Environment, 39, 6747-6764.
http://dx.doi.org/10.1016/j.atmosenv.2005.07.072
[16] Semeniuk, T.A., Wise, M.E., Martin, S.T., Russell, L.M. and Buseck, P.R. (2007) Water Uptake Characteristics of Individual Atmospheric Particles Having Coatings. Atmospheric Environment, 41, 6225-6235.
http://dx.doi.org/10.1016/j.atmosenv.2007.04.001
[17] Ramirez-Leal, R., Valle-Martinez, M. and Cruz-Campas, M. (2014) Physico-Chemical Characterization of Total Suspended Particles (TSP) Analysis by SEM-EDS. International Journal of Advanced Research, 2, 815-817.
[18] Goldstein, J.I. (1992) Scanning Electron Microscopy and X-Ray Microanálisis. Springer, New York.
http://dx.doi.org/10.1007/978-1-4613-0491-3
[19] Ramirez-Leal, R., Duarte-Tagles, H., Burgos-Hernandezn, M. and Chavez-Toledo, C. (2013) SEM-EDS Identification and Characterization of Radioactive Particles in Samples of PM10. Proceedings of Microscopy and Microanalysis, Cambridge University Press, Danvers, 2002-2003.                                            eww141211lx

Viscosity Effects of the Precursor Solution and Surface Structure of Gadolinium Oxide (Gd2O3) and Gadolinium Oxide Europium Doped (Gd2O3:Eu3+) Sol-Gel Films

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52061#.VIEBLmfHRK0

ABSTRACT

The sol-gel method is a novel technique for the preparation of thin films. In this research, gadolinium oxide (Gd2O3) and gadolinium oxide europium doped (Gd2O3:Eu3+) films prepared via the sol-gel and dip coating methods were investigated. In addition to the elaboration on the sol-gel preparation routes and additional observations of the films’ surface morphology as characterized by scanning electron microscope (SEM), we determined via viscosity measurements that the sols were stable for 398 days. FTIR analysis of the Gd2O3 and Gd2O3:Eu3+ dip coated films was made to monitor the decomposition and oxidation reactions that occurred during processing as well as process stability.

Cite this paper

Johnson, Q. , Edwards, M. , Herring, J. and Curley, M. (2014) Viscosity Effects of the Precursor Solution and Surface Structure of Gadolinium Oxide (Gd2O3) and Gadolinium Oxide Europium Doped (Gd2O3:Eu3+) Sol-Gel Films. Materials Sciences and Applications, 5, 1027-1033. doi: 10.4236/msa.2014.514105.

References

[1] Takagi, K. and Fukuzawa, T. (1983) Cerium-Activated Gd2SiO5 Single Crystal Scintillator. Applies Physics Letters, 42, 43-45.
http://dx.doi.org/10.1063/1.93760
[2] Gambaccini, M., Taibi, A., Baldelli, P., Del Guerra, A. and Tuffanelli, A. (1998) Image Noise Properties of a Phosphor-Coated CCD X-Ray Detector. Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 409, 508-510.
http://dx.doi.org/10.1016/S0168-9002(97)01304-1
[3] Guo, H., Yang, X., Xiang, T., Zhang, W., Lou, L. and Mugnier, J. (2004) Structure and Optical Properties of Sol-gel Derived Gd2O3 Waveguide Films. Applied Surface Science, 230, 215-221.
http://dx.doi.org/10.1016/j.apsusc.2004.02.032
[4] Bae, J.S., Shim, K.S., Yang, H.K., Moon, B.K., Jeong, J.H., Kim, Y.S., Yi, S.S. and Kim, J.H. (2006) Surface Morphology and Crystalline Phase Dependent Photoluminescence of Gd2O3:Eu3+ Thin Films Grown on Various Substrates. Thin Solid Films, 515, 2497-2500.
http://dx.doi.org/10.1016/j.tsf.2006.07.088
[5] Augusciuk, E. (2012) Method of m-Line Spectroscopy, A Good Tool to Determine and Control the Optical Parameters of Waveguide Structures. Proceeding of SPIE, 8702, 870207-870211.
http://dx.doi.org/10.1117/12.2010911
[6] Garcia-Murillo, A., Le Luyer, C., Dujardin, C., Pedrini, C. and Mugnier, J. (2001) Elaboration and Characterization of Gd2O3 Waveguiding Thin Films Prepared by the Sol-gel Process. Optical Materials, 16, 39-46.
http://dx.doi.org/10.1016/S0925-3467(00)00057-4
[7] Liu, X., Liu, B., Gu, M., Xiao, L. and Xu, X. (2006) Highly Enhanced Photoluminescence and X-Ray Excited Luminescence of Li Doped Gd2O3:Ee3+ Thin Films. Solid State Communications, 137, 162.
http://dx.doi.org/10.1016/j.ssc.2005.10.018
[8] Le Luyer, C., Garcia-Murillo, A., Bernstein, E. and Mugnier, J. (2003) Waveguide Raman Spectroscopy of Sol-Gel Gd2O3 Thin Films. Journal of Raman Spectroscopy, 34, 234-239.
http://dx.doi.org/10.1002/jrs.980
[9] Ferrara, M.C., Altamura, D., Schioppa, M., Tapfer, L., Nichelatti, E., Pilloni, L. and Montecchi, M. (2008) Growth, Characterization and Optical Properties of Nanocrystalline Gadolina Thin Films Prepared by Sol-Gel Dip Coating. Journal of Physics D: Applied Physics, 41, Article ID: 225408.
http://dx.doi.org/10.1088/0022-3727/41/22/225408
[10] Johnson, Q.S., Edwards, M. and Curley, M. (2013) Analysis of the Refractive Index and Film Thickness of Eu Doped Gadolinium Oxide (Gd2O3) Planar Waveguides Fabricated by the Sol-Gel And Dip Coating Methods. Proceedings of SPIE, 8847, 884706.
[11] Gaucher, P., Hector, J. and Kurfiss, J.C. (1995) NATO ASI Series, Ser. E. Science and Technology of Electroceramic Thin Films, 284, 147.                                                                                   eww141205lx

Synthesis of Tantalum Hydride Using Mechanical Milling and Its Characterization by XRD, SEM, and TGA

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51354#.VGVQfGfHRK0

ABSTRACT

In this paper, we report the results obtained from different phases of metal hydrides. The synthesis and characterization of tantalum hydrides were obtained “in situ” during mechanical milling. Elemental Ta with purity of 99.8% was used in this investigation to obtain the hydrides. A highenergy ball milling technique was utilized to prepare hydrogenated phases. Ta hydrides and oxides were formed as function of milling process time. Milling times of 5, 10 and 20 hours were programmed, and the ball-to-powder weight ratio was 10:1. The material was first characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). Before and after hydrogenation process the material was also analyzed by TGA. X-ray diffraction analysis demonstrated that only tantalum hydrides (Ta2H and TaH0.5) were obtained after 20 h of milling. We will discuss the effect of the ball-milling process about formation “in situ” of nanometric tantalum hydrides with methanol as a hydrogen source.

Cite this paper

Iturbe-García, J. and López-Muñoz, B. (2014) Synthesis of Tantalum Hydride Using Mechanical Milling and Its Characterization by XRD, SEM, and TGA. Advances in Nanoparticles, 3, 159-166. doi: 10.4236/anp.2014.34020.

References

[1] Gutfleisch, O., Dal Toè, S., Herrich, M., Handstein, A. and Pratt, A. (2005) Hydrogen Sorption Properties of Mg-1 wt.% Ni-0.2 wt.% Pd Prepared by Reactive Milling. Journal of Alloys and Compounds, 404-406, 413-416. http://dx.doi.org/10.1016/j.jallcom.2004.09.083
[2] Yoonyoung, K., Eung-Kyu, L., Jae-Hyeok, S., Young, W.C. and Kyung, B.Y. (2006) Mechanochemical Synthesis and Thermal Descomposition of Mg(AlH4)2. Journal of Alloys and Compounds, 422, 283-287. http://dx.doi.org/10.1016/j.jallcom.2005.11.063
[3] Suryanarayana, C. (2001) Mechanical Alloying and Milling. Progress in Materials Science, 46, 1-184.
http://dx.doi.org/10.1016/S0079-6425(99)00010-9
[4] Gross, K.J., Chartouni, D., Leroy, E., Zuttel, A. and Schlapbach, L. (1998) Mechanically Milled Mg Composites for Hydrogen Storage: The Relationship between Morphology and Kinetics. Journal of Alloys and Compounds, 259-270.
[5] Fecht, H.J., Hellstern, E., Fu, Z. and Johnson, W.L. (1990) Nanocrystalline Metals Prepared by High-Energy Ball Milling. Metallurgical and Materials Transactions A, 21, 2333-2337.
http://dx.doi.org/10.1007/BF02646980
[6] Balema, V.P., Wiench, J.W., Pruski, M. and Pecharsky, V.K. (2002) Mechanically Induced Solid-State Generation of Phosphorus Ylides and the Solvent-Free Wittig Reaction. Journal of the American Chemical Society, 124, 6244-6245. http://dx.doi.org/10.1021/ja017908p
[7] Mamatha, M., Weidenthaler, C., Pommerin, A., Felderhoff, M. and Schüth, F. (2006) Comparative Studies of the Decomposition of Alanates Followed by in Situ XRD and DSC Methods. Journal of Alloys and Compounds, 416, 303- 314. http://dx.doi.org/10.1016/j.jallcom.2005.09.004
[8] Mamatha, M., Bogdanovic, B., Felderhoff, M., Pommerin, A., Schmidt, W. and Schüth, F. (2006) Mechanochemical Preparation and Investigation of Properties of Magnesium, Calcium and Lithium-Magnesium Alanates. Journal of Alloys and Compounds, 407, 78-86.
http://dx.doi.org/10.1016/j.jallcom.2005.06.069
[9] Lohstroh, W., Roth, A., Hahn, H. and Fichtner, M. (2010) Thermodynamic Effects in Nanoscale NaAlH4. ChemPhysChem, 11, 789-792. http://dx.doi.org/10.1002/cphc.200900767
[10] Balema, V.P. and Balema, L. (2005) Missing Pieces of the Puzzle or about Some Unresolved Issues in Solid State Chemistry of Alkali Metal Aluminohydrides. Physical Chemistry Chemical Physics, 7, 1310-1314. http://dx.doi.org/10.1039/b419490j
[11] Chaudhuri, S., Graetz, J., Ignatov, A., Reilly, J.J. and Muckerman, J.T. (2006) Understanding the Role of Ti in Reversible Hydrogen Storage as Sodium Alanate: A Combined Experimental and Density Functional Theoretical Approach. Journal of the American Chemical Society, 128, 11404-11415.
http://dx.doi.org/10.1021/ja060437s
[12] Von Colbe, J.M.B., Felderhoff, M., Bogdanovic, B., Schüth, F. and Weidenthaler, C. (2005) One-Step Direct Synthesis of a Ti-Doped Sodium Alanate Hydrogen Storage Material. Chemical Communications, 4732-4734. http://dx.doi.org/10.1039/b506502j
[13] Huot, J., Boily, S., Guther, V. and Schulz, R. (1999) Synthesis of Na3AlH6 and Na2LiAlH6 by Mechanical Alloying. Journal of Alloys and Compounds, 383, 304-306.
http://dx.doi.org/10.1016/S0925-8388(98)00875-5
[14] Kojima, Y., Kawai, Y., Hagab, T., Matsumoto, M. and Koiwai, A. (2007) Direct Formation of LiAlH4 by a Mechanochemical Reaction. Journal of Alloys and Compounds, 441, 189-191.
http://dx.doi.org/10.1016/j.jallcom.2006.08.343
[15] Balema, V.P., Pecharsky, V.K. and Dennis, K.W. (2000) Solid State Phase Transformations in LiAlH4 during High- Energy Ball-Milling. Journal of Alloys and Compounds, 313, 69-74.
http://dx.doi.org/10.1016/S0925-8388(00)01201-9
[16] Mamatha, M., Bogdanovic, B., Felderhoff, M., Pommerin, A., Schmidt, W., Schuth, F. and Weidenthaler, C. (2006) Mechanochemical Preparation and Investigation of Properties of Magnesium, Calcium and Lithium-Magnesium Alanates. Journal of Alloys and Compounds, 407, 78-86.
http://dx.doi.org/10.1016/j.jallcom.2005.06.069
[17] Vajo, J.J. and Olson, G.L. (2007) Hydrogen Storage in Destabilized Chemical Systems. Scripta Materialia, 56, 829- 834. http://dx.doi.org/10.1016/j.scriptamat.2007.01.002
[18] Zhang, Y., Zhang, W.-S., Wang, A.-Q., Sun, L.-X., Fan, M.-Q., Chu, H.-L., Sun, J.-C. and Zhang, T. (2007) LiBH4 Nanoparticles Supported by Disordered Mesoporous Carbon: Hydrogen Storage Performances and Destabilization Mechanisms. International Journal of Hydrogen Energy, 32, 3976-3980. http://dx.doi.org/10.1016/j.ijhydene.2007.04.010
[19] Liu, B.H. and Li, Z.P. (2009) A Review: Hydrogen Generation from Borohydride Hydrolysis Reaction. Journal of Power Sources, 187, 527-534. http://dx.doi.org/10.1016/j.jpowsour.2008.11.032
[20] Miller, G.L. (1959) Corrosion by Chemicals, Gases and Liquids Metals. In: Finniston, H.M., Ed., Metallurgy of the Rarer Metals-6, Tantalum and Niobium, Butterworths Scientific Publications, London, 431-543.
[21] Park, K.Y., Kim, H.J. and Suh, Y.J. (2007) Preparation of Tantalum Nanopowders through Hydrogen Reduction of TaCl5 Vapor. Powder Technology, 172, 144-148.
http://dx.doi.org/10.1016/j.powtec.2006.11.011
[22] Rothenberger, K.S., Howard, B.H., Killmeyer, R.P., Enick, R.M., Bustamante, F., Ciocco, M.V., Morreale, B.D. and Buxbaum, E. (2003) Evaluation of Tantalum-Based Materials for Hydrogen Separation at Elevated Temperatures and Pressures. Journal of Membrane Science, 218, 19-37.
http://dx.doi.org/10.1016/S0376-7388(03)00134-0
[23] Porschke, E., Shaltiel, D., Klatt, K.H. and Wenzl, H. (1986) Hydrogen Desorption from Tantalum with Segregated Oxide Surface Layers. Journal of Physics and Chemistry of Solids, 47, 1003-1011.
http://dx.doi.org/10.1016/0022-3697(86)90116-2
[24] Esayed, A.Y. and Northwood, D.O. (1992) Metal Hydrides: A Review of Group V Transition Metals—Niobium, Vanadium and Tanalum. International Journal of Hydrogen Energy, 17, 41-52.
http://dx.doi.org/10.1016/0360-3199(92)90220-Q                                                                eww141114lx