Efficacy of Pelletized Lime versus Limestone Sand for Forest Regeneration Enhancement in Pennsylvania, USA

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53543#.VMiBAizQrzE

ABSTRACT

The efficacy of limestone sand and pelletized lime for remediation of soil acidity was compared in order to determine if limestone sand was a more cost-effective alternative to pelletized lime. Between fall of 2002 and spring 2003, two forested sites in Pennsylvania were clear cut and fenced. Pelletized lime and limestone sand were applied to separate 400-m2 plots within the sites at rates of 2170 kg·ha-1 and 4335 kg·ha-1, respectively. Two additional 400-m2 plots were used as controls. A paired before-after control-impact study design was used to assess changes in soil, soil solution, vegetation and biomass after lime application. Soil samples were collected from the Oi, Oe + Oa, and A horizons before and after lime application. Woody and herbaceous vegetation was harvested from 1-m2 sub-plots before and after liming and bi-weekly soil solution samples were collected for six months following lime application. Analysis of variance procedures were used to compare changes in the treatment plots over time. Changes in soil chemistry following lime application were comparable on the limestone sand and pelletized lime plots. There was a significant increase in exchangeable Mg and Mg saturation in the Oe + Oa horizon on all of the lime treatment plots relative to controls, but a greater percentage of applied Ca and Mg was exchangeable in the O-horizon in pelletized lime plots nine months after liming. Plant biomass did not increase on the lime treatment plots relative to the control one year post treatment. The majority of applied Ca and Mg from pelletized lime and limestone sand remained in the litter layer, with little movement into the A-horizon after one growing season. These results indicated that the application of limestone sand at two times the rate of pelletized lime produced comparable changes in soil and soil solution chemistry at a fraction of the cost.

Cite this paper

Mizel, N. , Sharpe, W. and Swistock, B. (2015) Efficacy of Pelletized Lime versus Limestone Sand for Forest Regeneration Enhancement in Pennsylvania, USA. Open Journal of Forestry, 5, 221-234. doi: 10.4236/ojf.2015.52020.

References

[1] Blake, G. R., & Hartge, K. H. (1986). Bulk Density, Methods of Soil Analysis, Part 1. Soil Science Society of America Journal, 363-376.
[2] Bolan, N. S., Syers, J. K., Tillman, R. W., & Scotter, D. R. (1988). Effect of Liming and Phosphate Additions on Sulfate Leaching in Soils. Journal of Soil Science, 39, 493-504.
http://dx.doi.org/10.1111/j.1365-2389.1988.tb01234.x
[3] Clesceri, L. S., Greenberg, A. E., & Eaton, A. D. (Eds.) (1998). Standard Methods for the Examination of Water and Waste-water (20th ed.). American Public Health Association, American Water Works Association and Water Environment Federation, Washington DC.
[4] Cronan, C. S., & Grigal, D. F. (1995). Use of Calcium/Aluminum Ratios as Indicators of Stress in Forest Ecosystems. Journal of Environmental Quality, 24, 209-226.
http://dx.doi.org/10.2134/jeq1995.00472425002400020002x
[5] De Keersmaeker, L., Neirynck, J., Maddelein, D., De Schrijver, A., & Lust, N. (2000). Soil Water Chemistry and Revegetation of a Limed Clearcut in a Nitrogen Saturated Forest. Water, Air, and Soil Pollution, 122, 49-62.
http://dx.doi.org/10.1023/A:1005238213656
[6] Demchik, M. C., & Sharpe, W. E. (1998). The Effect of Calcium/Aluminum Ratio on Root Elongation of Twenty-Six Pennsylvania Plants. Proceedings of the 1998 PA Acidic Deposition Conference on the Effects of Acidic Deposition on Pennsylvania’s Forests, The Pennsylvania State University, University Park, PA, 211-217.
[7] Demchik, M. C., & Sharpe, W. E. (2000). The Effect of Soil Nutrition, Soil Acidity and Drought on Northern Red Oak (Quercus rubra L.) Growth and Nutrition on Pennsylvania Sites with High and Low Red Oak Mortality. Forest Ecology and Management, 136, 199-207.
http://dx.doi.org/10.1016/S0378-1127(99)00307-2
[8] Drohan, P. J., Stout, S. L., & Petersen, G. W. (2002). Sugar Maple (Acer saccharum Marsh.) Decline during 1979-1989 in Northern Pennsylvania. Forest Ecology and Management, 170, 1-17.
http://dx.doi.org/10.1016/S0378-1127(01)00688-0
[9] Edwards, P. J., & Wood, F. (1993). Field and Laboratory Quality Assurance/Quality Control Protocols and Accomplishments for the Fernow Experimental Forest Watershed Acidification Study. USDA General Technical Report, NE-177.
[10] Federer, C. A., Hornbeck, J. W., Tritton, L. M., Martin, C. W., Pierce, R. S., & Smith, C. T.(1989). Long-Term Depletion of Calcium and Other Nutrients in Eastern US Forests. Environmental Management, 13, 593-601.
http://dx.doi.org/10.1007/BF01874965
[11] Geary, R. J., & Driscoll, C. T. (1996). Forest Soil Solutions: Acid/Base Chemistry and Response to Calcite Treatment. Biogeochemistry, 32, 195-220.
http://dx.doi.org/10.1007/BF02187139
[12] Hallett, R. A., & Hornbeck, J. W. (1997). Foliar and Soil Nutrient Relationships in Red Oak and White Pine Forests. Canadian Journal of Forest Research, 27, 1233-1244.
http://dx.doi.org/10.1139/x97-026
[13] Hallowich, J. S. (1988). Soil Survey of Clearfield County Pennsylvania. Soil Conservation Service, US Department of Agriculture.
[14] Long, R. P., Horsley, S. B., & Lilja, P. R. (1997). Impact of Forest Liming on Growth and Crown Vigor of Sugar Maple and Associated Hardwoods. Canadian Journal of Forest Research, 27, 1560-1573.
http://dx.doi.org/10.1139/x97-074
[15] Lynch, J. A. (1999). Atmospheric Deposition in Pennsylvania. Proceedings of the 1998 PA Acidic Deposition Conference on the Effects of Acidic Deposition on Pennsylvania’s Forests, University Park, 245-257.
[16] Marschner, B. (1993). Microbial Contribution to Sulfate Mobilization after Liming an Acid Forest Soil. Journal of Soil Science, 44, 459-466.
http://dx.doi.org/10.1111/j.1365-2389.1993.tb00468.x
[17] Miller, R. O. (1998). High-Temperature Oxidation: Dry Ashing. In Y. Kalra (Ed.), Handbook and Reference Methods for Plant Analysis. New York: CRC Press.
[18] MiniTab for Windows (2000). Version 13.3. MiniTab Inc.
[19] Mitchell, M. J., McGee, G., McHale, P., & Weathers, K. C. (2001). Experimental Design and Instrumentation for Analyzing Solute Concentrations and Fluxes for Quantifying Biogeochemical Processes in Watersheds. Proceedings of the 4th International Conference in Long Term Ecological Research (LTER) in East Asian and Pacific Region, Lake Hovsgol, 2-5 July 2001.
[20] Pabian, S. E., Rummel, S. M, Sharpe, W. E., & Brittingham, M. C. (2012). Terrestrial Liming as a Restoration Technique for Acidified Forest Ecosystems. International Journal of Forestry Research, 2012, Article ID: 976809.
[21] Schreffler, A. M., & Sharpe, W. E. (2003). Effects of Lime, Fertilizer, and Herbicide on Forest Soil and Soil Solution Chemistry, Hardwood Regeneration, and Hardwood Growth Following Shelterwood Harvest. Forest Ecology and Management, 177, 471-484.
http://dx.doi.org/10.1016/S0378-1127(02)00452-8
[22] Shepard, J. P., Mitchell, M. J., Scott, T. J., & Driscoll, C. T. (1990). Soil Solution Chemistry of an Adirondack Spodosol: Lysimetry and N Dynamics. Canadian Journal of Forest Research, 20, 818-824.
http://dx.doi.org/10.1139/x90-108
[23] Simmons, J. A., Yavitt, J. B., & Fahey, T. J. (1996). Watershed Liming Effects on the Forest Floor N Cycle. Biogeochemistry, 32, 221-244.
http://dx.doi.org/10.1007/BF02187140
[24] Swistock, B. R., Yamona, J. J., De Walle, D., & Sharpe, W. E. (1990). Comparison of Soil Water Chemistry and Samples Size Requirements for Pan vs. Tension Lysimeters. Water Air Soil Pollution, 50, 387-396.
http://dx.doi.org/10.1007/BF00280637
[25] Taylor, D. C., Churchill, N. J., Losche, C. K., Mentzer, S. D., & Weaver, J. B. (1968). Soil Survey of Westmoreland County Pennsylvania. Soil Conservation Service, US Department of Agriculture, USA.
[26] Tomlinson, G. H., & Tomlinson, R. L. (Eds.) (1990). Effects of Acid Deposition of the Forests of Europe and North America. Boca Raton, FL: CRC Press, Inc.
[27] USEPA (1986). Test Methods for Evaluating Solid Waste (Volume IA, 3rd ed.). EPA/SW-846, Springfield, VA: National Technical Information Service.
[28] Wolf, A. M., & Beegle, D. B. (1995). Recommended Soil Tests for Macronutrients: Phosphorous, Potassium, Calcium and Magnesium. In T. J. Sims, & A. Wolf (Eds.), Recommended Soil Testing Procedures for the Northeastern United States: Northeast Regional Bulletin #493 (pp. 25-34). Newark, DE: Agricultural Experiment Station, University of Delaware.                                                                                  eww150128lx

Changes in Soil Macronutrients after a Long-Term Application of Olive Mill Wastewater

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53450#.VMWzCSzQrzE

ABSTRACT

The land spreading of olive mill wastewater (OMW) derived from olive oil production can represent a suitable option to enrich and maintain agriculture soils under south Mediterranean climates. Therefore, OMW spreading field may represent a low cost contribution to crop fertilization and soil amendment. The main objective of this study was to investigate the long-term effects of raw OMW application on soil macronutrients and phenolic compounds dynamics. The results showed that regular application of three doses: 50, 100 and 200 m3·ha-1 of OMW for nine successive years increased the soil electrical conductivity significantly (p ≤ 0.05%) with the increase of OMW rates at the depth 0 – 20 cm. The pH variations were not detected after ten months of the spreading date. Furthermore, soil sodium adsorption ratio (SAR) and exchangeable sodium percentage (ESP) values were substantially affected by OMW salinity. The soil organic matter (SOM) increased from 0.068% observed for the control sample to 0.2%, 0.34% and 0.48%, respectively, with the increase of OMW rate in the top layer (0 – 20 cm). The potassium, phosphorus and nitrogen increased gradually with the OMW application dose. The Ca2+ contents on soil decreased with the spreading of OMW rate, as referred to control. In addition, the phenolic compounds variations were not proportional to doses applied and its levels remained high as compared with the control essentially on top layers (0 – 40 cm). This practice should be beneficial to organic farming and is an alternative solution to direct spreading of raw OMW on soil.

Cite this paper

Chaari, L. , Elloumi, N. , Mseddi, S. , Gargouri, K. , Rouina, B. , Mechichi, T. and Kallel, M. (2015) Changes in Soil Macronutrients after a Long-Term Application of Olive Mill Wastewater. Journal of Agricultural Chemistry and Environment, 4, 1-13. doi: 10.4236/jacen.2015.41001.

References

[1] IOC, International Olive Council (2012) The World Market in Figures. Olivae, 117, 28-34.
[2] Mechri, B., Echbili, A., Issaoui, M., Braham, M., Elhadij, S.B. and Hammami, M. (2007) Short-Term Effects in Soil Microbial Community Following Agronomic Application of Olive Mill Wastewaters in a Field of Olive Trees. Applied Soil Ecology, 36, 216-223. http://dx.doi.org/10.1016/j.apsoil.2007.03.005
[3] Sellami, F., Jarboui, R., Hachicha, S., Medhioub, K. and Ammar, E. (2008) Co-Composting of Oil Exhausted Olive- Cake, Poultry Manure and Industrial Residues of Agro-Food Activity for Soil Amendment. Bioresource Technology, 99, 1177-1188. http://dx.doi.org/10.1016/j.biortech.2007.02.018
[4] Moraetis, D., Stamati, F.E., Nikolaidis, N.P. and Kalogerakis, N. (2011) Olive Mill Wastewater Irrigation of Maize: Impacts on Soil and Groundwater. Agriculture Water Management, 98, 1125-1132.
http://dx.doi.org/10.1016/j.agwat.2011.02.006
[5] Sierra, J., Marti, E., Monserrat, G., Cruanas, R. and Garou, M.A. (2001) Characterisation and Evolution of a Soil Affected by Olive Mill Wastewater Disposal. Science of the Total Environment, 279, 207-214.
http://dx.doi.org/10.1016/S0048-9697(01)00783-5
[6] Kappekalis, I.E., Tsagarakis, K.P. and Crowth, J.C. (2008) Olive Oil History, Production by Product Management. Reviews in Environmental Science and Biotechnology, 7, 1-26.
http://dx.doi.org/10.1007/s11157-007-9120-9
[7] Ouzounidou, G., Zervakis, G.I. and Gaitis, F. (2010) Raw and Microbiologically Detoxified Olive Mill Waste and Their Impact on Plant Growth. Terrestrial and Aquatic Environmental Toxicology, 4, 21-38.
[8] Ramos-Cormanzana, A. (1986) Physicals Chemical, Microbiological and Biochemical Characters of Vegetation Water. International Symposium on Valorization of Olive by Products, FAO, Rome, 19-40.
[9] Paredes, M.J., Moreno, E., Ramos-Cormenzana, A. and Martinez, J. (1987) Characteristics of Soil after Pollution with Wastewaters from Olive Oil Extraction Plants. Chemosphere, 16, 1557-1564.
http://dx.doi.org/10.1016/0045-6535(87)90096-8
[10] Rouvalis, A., Iliopoulou-Georgudaki, J. and Lyberatos, G. (2004) Application of Two Microbiotests for Acute Toxicity Evaluation of Olive Mill Wastewaters. Fresenius Environmental Bulletin, 13, 458-464.
[11] Roig, A., Cayuela, M.L. and Sanchez-Monedero, M.A. (2006) An Overview on Olive Mill Wastes and Their Valorization Methods. Waste Management, 26, 960-969.
http://dx.doi.org/10.1016/j.wasman.2005.07.024
[12] Caputo, M.C., De Girolamo, A.M. and Volpe, A. (2013) Soil Amendment with Olive Mill Wastes: Impact on Ground Water. Journal of Environmental Management, 131, 216-221.
http://dx.doi.org/10.1016/j.jenvman.2013.10.004
[13] Chartzoulakis, K., Psarras, G., Moutsopoulou, M. and Stefanoudaki, E. (2010) Application of Olive Wastewater to Cretan Olive Orchard: Effects on Soil Properties, Plant Performance and the Environment. Agriculture Ecosystem and Environment, 138, 293-298. http://dx.doi.org/10.1016/j.agee.2010.05.014
[14] Mahmoud, M., Janssen, M., Peth, S., Horn, R. and Lennartz, B. (2012) Long-Term Impact of Irrigation with Olive Mill Wastewater on Aggregate Properties in the Top Soil. Soil and Tillage Research, 124, 24-31. http://dx.doi.org/10.1016/j.still.2012.04.002
[15] Mahmoud, M., Janssen, M., Haboub, N., Nassour, A. and Lennartz, B. (2010) The Impact of Olive Mill Wastewater Application on Flow and Transport Properties in Soils. Soil and Tillage Research, 107, 36-41. http://dx.doi.org/10.1016/j.still.2010.01.002
[16] Mekki, A., Dhouib, A. and Sayadi, S. (2007) Polyphenols Dynamics and Phytotoxicity in a Soil Amended by Olive Mill Wastewaters. Journal of Environmental Management, 84, 134-140.
http://dx.doi.org/10.1016/j.jenvman.2006.05.015
[17] Saadi, I., Laor, Y., Raviv, M. and Medina, S. (2007) Land Spreading of Olive Mill Wastewater: Effects on Soil Microbial Activity and Potential Phytotoxicity. Chemosphere, 66, 75-83.
http://dx.doi.org/10.1016/j.chemosphere.2006.05.019
[18] Sierra, J., Marti, E., Garau, M. and Cruanas, A. (2007) Effects of the Agronomic Use of Olive Oil Mill Wastewater: Field Experiment. Science of the Total Environment, 378, 90-94.
http://dx.doi.org/10.1016/j.scitotenv.2007.01.009
[19] Piotrowska, A., Iamarino, G., Rao, M.A. and Gianfreda, L. (2006) Short-Term Effects of Olive Mill Waste Water (OMW) on Chemical and Biochemical Properties of a Semiarid Mediterranean Soil. Soil Biology and Biochemistry, 38, 600-610. http://dx.doi.org/10.1016/j.soilbio.2005.06.012
[20] Mechri, B., Cheheb, H., Boussadia, O., Attia, F., Ben Mariem, F., Braham, M. and Hammami, M. (2011) Effects of Agronomic Application of Olive Mill Wastewater in a Field of Olive Trees on Carbohydrate Profiles, Chlorophyll a Fluorescence and Mineral Nutrient Content. Environmental and Experimental Botany, 71, 184-191. http://dx.doi.org/10.1016/j.envexpbot.2010.12.004
[21] Di Bene, C., Pellegrino, E., Debolini, M., Silvestri, N. and Bonari, E. (2013) Short- and Long-Term Effects of Olive Mill Wastewater Land Spreading on Soil Chemical and Biological Properties. Soil Biology and Biochemistry, 56, 21- 33. http://dx.doi.org/10.1016/j.soilbio.2012.02.019
[22] Magdich, S., Jarboui, R., Ben Rouina, B., Boukhris, M. and Ammar, E. (2012) A Yearly Spraying of Olive Mill Wastewater on Agriculture Soil over Six Successive Years: Impact of Different Application Rates on Olive Production, Phenolic Compounds, Phytotoxicity and Microbial Counts. Science of the Total Environment, 430, 209-216. http://dx.doi.org/10.1016/j.scitotenv.2012.05.004
[23] Kallel, M., Belaid, C., Boussahel, R., Ksibi, M., Montiel, A. and Elleuch, B. (2009) Olive Mill Wastewater Degradation by Fenton Oxidation with Zero-Valent Iron and Hydrogen Peroxide. Journal of Hazardous Materials, 163, 550- 554. http://dx.doi.org/10.1016/j.jhazmat.2008.07.006
[24] Olsen, S.R. and Sommers, L.E. (1982) Phosphorus. In: Page, A.L., Milller, R.H. and Keeny, D.R., Eds., Methods of Soil Analysis, Part 2, American Society of Agronomy, Madison, 403-430.
[25] Box, J.D. (1983) Investigation of the Folin-Ciocalteau Phenol Reagent for the Determination of Polyphenolic Substances in Natural Waters. Water Research, 17, 511-522.
http://dx.doi.org/10.1016/0043-1354(83)90111-2
[26] Klute, E. (1986) Methods of Soil Analysis, Part 1. American Society of Agronomy, Madison.
[27] Nelson, D.W. and Sommers, L.E. (1996) Methods of Soil Analysis, Part 3. Chemical Methods, Madison, 961-1010.
[28] Sumner, M.E., Rengasamy, P. and Naidu, R. (1998) Sodic Soils: A Reappraisal. In: Sumner, M.E. and Naidu, R., Eds., Sodic Soils: Distribution, Properties, Management, and Environmental Consequences, Oxford University Press, New York, 3-17.
[29] Arshad, M.A. and Martin, S. (2002) Identifying Critical Limits for Soil Quality Indicators in Agro-Ecosystem. Agriculture Ecosystems and Environment, 88, 153-160.
http://dx.doi.org/10.1016/S0167-8809(01)00252-3
[30] Piotrowska, A., Rao, M.A., Scotti, R. and Gianfreda, L. (2011) Changes in Soil Chemical and Biochemical Properties Following Amendment with Crude and Dephenolized Olive Mill Waste Water (OMW).Geoderma, 16, 8-17. http://dx.doi.org/10.1016/j.geoderma.2010.11.011
[31] Haug, R.T. (1993) The Practical Handbook of Compost Engineering. Lewis Publishers, Boca Raton.
[32] Chowdhury, A.K., Akratos, C.S., Vayenas, D.V. and Paulou, S. (2013) Olive Mill Waste Composting: A Review. International Biodeterioration and Biodegradation, 85, 108-119.
http://dx.doi.org/10.1016/j.ibiod.2013.06.019
[33] Cox, L., Celis, R., Hermosin, M.C., Becker, A. and Cornejo, J. (1997) Porosity and Herbicide Leaching in Soils Amended with Olive Mill Wastewater. Agriculture Ecosystems and Environment, 65, 151-161.
http://dx.doi.org/10.1016/S0167-8809(97)00063-7
[34] Katyal, J.C., Rao, N.H. and Reddy, M.N. (2001) Critical Aspects of Organic Matter Management in the Tropics: The Example of India. Nutrient Cycling in Agroecosystems, 61, 77-88.
http://dx.doi.org/10.1023/A:1013320502810
[35] Carreira, J.A., Vinegla, B. and Lajtha, K. (2006) Secondary CaCO3 and Precipitation of P-Ca Compounds Control the Retention of Soil P in Arid Ecosystems. Journal of Arid Environments, 64, 460-473.
http://dx.doi.org/10.1016/j.jaridenv.2005.06.003
[36] Gamba, C., Piovanelli, C., Papini, R., Pezzarossa, B., Ceccarini, L. and Bonari, E. (2005) Soil Microbial Characteristics and Mineral Nitrogen Availability as Affected by Olive Oil Waste Water Applied to Cultivated Soil. Communication in Soil Science Plant Analysis, 36, 937-950.
http://dx.doi.org/10.1081/CSS-200050278
[37] Foth, H.D. (1990) Chapter 12: Plant Soil Macronutrient Relations. In: Foth, H.D., Ed., Fundamental of Soil Science, John Wiley and Sons, New York, 186-209.
[38] Mäser, P., Gierth, M. and Schroeder, J.I. (2002) Molecular Mechanisms of Potassium and Sodium Uptake in Plants. Plant Soil, 247, 43-54. http://dx.doi.org/10.1023/A:1021159130729
[39] Zhang, F., Niu, J., Zhang, W., Chen, X., Li, C., Yuan, L. and Xie, J. (2010) Potassium Nutrition of Crops under Varied Regimes of Nitrogen Supply. Plant Soil, 335, 21-34.
http://dx.doi.org/10.1007/s11104-010-0323-4
[40] Gupta, R.K. and Abrol, I.P. (1990) Salt-Affected Soils: Their Reclamation and Management for Crop Production. Advances in Soil Sciences, 11, 223-289. http://dx.doi.org/10.1007/978-1-4612-3322-0_7
[41] Mkhabela, M. and Warman, P.R. (2005) The Influence of Municipal Solid Waste Compost on Yield, Soil Phosphorus Availability and Uptake by Two Vegetable Crops, Grown in a Pugwash Sandy Loam Soil in Nova Scotia. Agriculture Ecosystems and Environment, 106, 57-67.
http://dx.doi.org/10.1016/j.agee.2004.07.014
[42] Pal, D.K., Bhattacharyya, T., Ray, S.K., Chandran, P., Srivastava, P., Durge, S.L. and Bhuse, S.R. (2006) Significance of Soil Modifiers (Ca-Zeolites and Gypsum) in Naturally Degraded Vertisols of the Peninsular India in Redefining the Sodic Soils. Geoderma, 136, 210-228.
http://dx.doi.org/10.1016/j.geoderma.2006.03.020
[43] Qadir, M., Oster, J.D., Schubert, S., Noble, A.D. and Sahrawat, K.L. (2007) Phytoremediation of Sodic and Saline-Sodic Soils. Advances in Agronomy, 96, 197-247.
http://dx.doi.org/10.1016/S0065-2113(07)96006-X
[44] US Salinity Laboratory Staff (1954) Diagnosis and Improvement of Saline and Alkalin Soils. Agriculture Handbook No. 60, US Department of Agriculture, Washington DC.
[45] Marlet, S., Bouksila, F. and Bahri, A. (2009) Water and Salt Balance at Irrigation Schema Scale: A Comprehensive Approach for Salinity Assessment in Saharan Oasis. Agriculture Water Management, 96, 1131-1322. http://dx.doi.org/10.1016/j.agwat.2009.04.016
[46] Kachouri, S., Halaouli, S., Lomascolo, A., Asther, M. and Hamdi, M. (2005) Decolourization of Black Oxidized Olive Mill Wastewater by a New Tannase-Producing Aspergillus flavus Strain Isolated in Soil. World Journal of Microbiology and Biotechnology, 21, 1465-1470.
http://dx.doi.org/10.1007/s11274-005-6810-8                                                                     eww150126lx

Spatial Analysis of Leptospira in Rats, Water and Soil in Bantul District Yogyakarta Indonesia

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53411#.VMG4XyzQrzE

ABSTRACT

Leptospirosis is a potential threat to public health. An increasing number of people infected with Leptospira were reported in Bantul District, Yogyakarta special region with a case fatality rate (CFR) of 7.8%. Infected areas in the district have increased from 2 to 15 sub districts. Leptospirosis is caused by Leptospira bacteria and spread by direct contact with infected rodents and indirect contact through contaminated water or soil. Leptospira in rats, water and soil were detected using real-time quantitative polymerase chain reaction (qPCR). The sites of sampled materials were geocoded using Global Positioning System (GPS). Spatial analysis was used to predict the spread of Spira. This study aims to perform the mapping, clustering, and predicting the spread of Leptospira in Bantul Yogyakarta Indonesia. Data were collected from three sub-districts: Sedayu, Sewon and Bantul. The result showed that 38.04% from 368 samples were Spira positive. There were four significant clusters of infection spread source. Spira is predicted to spread in, and out from, Bantul District.

Cite this paper

Sumanta, H. , Wibawa, T. , Hadisusanto, S. , Nuryati, A. and Kusnanto, H. (2015) Spatial Analysis of Leptospira in Rats, Water and Soil in Bantul District Yogyakarta Indonesia. Open Journal of Epidemiology, 5, 22-31. doi: 10.4236/ojepi.2015.51004.

References

[1] Bharti, A.R., Nally, J.E., Ricaldi, J.N., Matthias, M.A., Diaz, M.M., Lovett, M.A., Levett, P.N., Gilman, R.H., Willig, M.R., Gotuzzo, E. and Vinetz, J.M. (2003) Leptospirosis: A Zoonotic Disease of Global Importance. The Lancet Infectious Diseases, 3, 757-771.
http://dx.doi.org/10.1016/S1473-3099(03)00830-2
[2] McBride, A.J.A., Santos, B.L., Queiroz, A., Santos, A.C., Hartskeerl, R.A., Reis, M.G., Ko, A.I. and Santos, C. (2007) Evaluation of Four Whole-Cell Leptospira-Based Serological Tests for Diagnosis of Urban Leptospirosis. Clinical and Vaccine Immunology, 14, 1245-1248.
http://dx.doi.org/10.1128/CVI.00217-07
[3] WHO (2007) Leptospirosis. Laboratory Manual.
[4] Levett, P.N. (2001) Leptospirosis. American Society for Microbiology, 14, 296-326.
[5] McBride, A., Athanazio, D., Reis, M. and Ko, A. (2005) Leptospirosis. Current Opinion in Infectious Diseases, 18, 376-386.
http://dx.doi.org/10.1097/01.qco.0000178824.05715.2c
[6] Matthias, M.A., Ricaldi, J.N., Cespedes, M., Diaz, M.M., Galloway, R.L., Saito, M., Steigerwalt, A.G., Patra, K.P., Ore, C.V., Gotuzzo, E., Robert, H., Levett, P.N. and Vinetz, J.M. (2008) Human Leptospirosis Caused by a New, Antigenically Unique Leptospira Associated with a Rattus Species Reservoir in the Peruvian Amazon. PLOS Neglected Tropical Diseases, 2, 1-12.
http://dx.doi.org/10.1371/journal.pntd.0000213
[7] Michna, S.W. (1970) Leptospirosis. Veterinary Record, 86, 484-496.
http://dx.doi.org/10.1136/vr.86.17.484
[8] Faine, S., Adler, B., Bolin, C. and Perolat, P. (1999) Leptospira and Leptospirosis. 2nd Edition, Medisci Press, Melbourne.
[9] Ido, Y., Hoki, R., Ito, H. and Wani, H. (1979) The Rat as a Carrier of Spiroci-I~Ta Ictero-Hiemorrhagi~E, the Causative Agent of Weil’s Disease (Spiroch./Etosis Icterohiemorrhagica). Tokyo Iji-Shuho.
[10] Chappel, R.J., Prime, R.W., Millar, B.D., Jones, R.T., Cutler, R.S. and Adler, B. (1998) Prevalence and Geographic Origin of Pigs with Serological Evidence of Infection with Leptospira Interrogans Serovar Pomona Slaughtered in Abattoirs in Victoria, Australia. Veterinary Microbiology, 62, 235-242.
http://dx.doi.org/10.1016/S0378-1135(98)00203-X
[11] Geisen, V., Stengel, C., Brem, S., Muller, W., Greene, C. and Hartmann, K. (2007) Canine Leptospirosis Infections? Clinical Signs and Outcome with Different Suspected Leptospira Serogroups (42 Cases). Journal of Small Animal Practice, 48, 324-328.
http://dx.doi.org/10.1111/j.1748-5827.2007.00324.x
[12] Zakeri, S., Sepahian, N., Afsharpad, M., Esfandiari, B., Ziapour, P. and Djadid, N.D. (2010) Molecular Epidemiology of Leptospirosis in Northern Iran by Nested Polymerase Chain Reaction/Restriction Fragment Length Polymorphism and Sequencing Methods. American Journal of Tropical Medicine and Hygiene, 82, 899-903.
http://dx.doi.org/10.4269/ajtmh.2010.09-0721
[13] Faine, S., Adler, B., Bolin, C. and Perolat, P. (1999) Leptospira and Leptospirosis. 2nd Edition, Medisci Press, Melbourne.
[14] Widarso, H., Wilfried, P. and Gasem, M. (2003) Pedoman Diagnosa dan Penatalaksanaan Kasus Penanggulangan Leptospirosis di Indonesia. Jakarta: Direktorat Jenderal PPM-PL, Subdit Zoonosis, Departemen Kesehatan.
[15] Rejeki, D.S.S. (2005) Faktor Risiko Lingkungan yang Berpengaruh Terhadap Kejadian Leptospirosis Berat. Universitas Diponegoro, Semarang.
[16] Gambiro and Wahyuni (2005) Laporan survey reservoir leptospirosis di Kabupaten Demak dan Kota Semarang Provinsi Jawa Tengah. Provinsi Jawa Tengah.
[17] Dinas Kesehatan Kabupaten Bantul (2013) Laporan Angka Kejadian Leptospirosis Tahun 2012.
[18] Syamsumin, D., Nurbeti, K., Syariffudin, V., Faisal, E., Rahayujati, B.T. and Santosa, T.B.H. (2010) Investigasi Kejadian Luar Biasa (KLB) Leptospirosis di Kabupaten Bantul, Provinsi Daerah Istimewa Yogyakarta. FETP-FK UGM.
[19] Melani, S. (2010) Analisis Spasiotemporal Kasus Leptospirosis di Kota Semarang Tahun 2009. Fakultas Kedokteran, Universitas Diponegoro, Semarang.
[20] Asyhar, T. (2008) Analisis Spasial Faktor Risiko Lingkungan pada Kejadian Leptospirosis di Kota Semarang.
[21] Sunaryo (2009) Kajian Berbasis Citra Penginderaan Jauh dan Sistem Informasi Geografis untuk Pemetaan dan Analisis Faktor Risiko Leptospirosis (Studi Kasus di Kota Semarang, Provinsi Jawa Tengah). Fakultas Geografi Universitas Gadjah Mada, Yogyakarta.
[22] Fuadi, A. (2012) Hubungan Ternak Sapi Sebagai Reservoir Leptospira dengan Kejadian Leptospirosi pada Peternak di Kabupaten Bantul.
[23] Dohoo, L., Martin, W. and Stryshn, H. (2003) Veterinary Epidemiologic Research. National Library of Canada, Canada, 47-49.
[24] Rochman, D., Sukarna and Suwalan (1999) Pola perkembangbiakan tikus sawah Rattus argentiventer pada berbagai daerah berpola tanam padi-padi di subang. Penelitian Pertanian, 2, 77-80.
[25] Ristiyanto (2007) Sosialisasi Pengendalian tikus untuk pencegahan leptospirosis. Balai Besar Penelitian dan Pengembangan Vektor dan Reservoir Penyakit, Badan Penelitian dan Pengembangan Kesehatan, Departemen Kesehatan RI, Salatiga.
[26] Smythe, L.D., Smith, I.L., Smith, G.A., Dohnt, M.F., Symonds, M.L., Barnett, L.J. and Mckay, D.B. (2002) A Quantitative PCR (TaqMan) Assay for Pathogenic Leptospira spp. BMC Infectious Diseases, 2, 1-7
http://dx.doi.org/10.1186/1471-2334-2-13
[27] McBride, A.J.A., Santos, B.L., Queiroz, A., Santos, A.C., Hartskeerl, R.A., Reis, M.G. and Ko, A.I. (2007) Evaluation of Four Whole-Cell Leptospira-Based Serological Tests for Diagnosis of Urban Leptospirosis. Clinical and Vaccine Immunology, 14, 1245-1248.
http://dx.doi.org/10.1128/CVI.00217-07
[28] Anies, Hadisaputro, S., Sakundarno, M. and Suhartono (2009) Lingkungan dan Perilaku pada Kejadian Leptospirosis. Media Medika Indonesiana, 43, 306-311.
[29] Lestariningsih (2002) Kelainan Ginjal pada Leptospirosis. In: Budi, R., H., G. and Muchlis, A.U.S., Eds., Kumpulan Makalah Simposium Leptospirosis, Universitas Diponegoro, Semarang, 47-53.
[30] Murtiningsih, B. (2003) Faktor resiko kejadian leptospirosis di provinsi daerah istimewa yogyakarta dan sekitarnya.
[31] Agustini, M. (2011) Environmental of Leptospirosis Endemic Area at Sumbersari Village, Moyudan Subdistrict, Sleman Regency Yogyakarta Special Region Province. Gadjah Mada University, Yogyakarta.
[32] Widarso, H., Husen, G., Wilfried, P., Tato, S., Endang, B., Septiawatichita and Pranti, S.M. (2005) Pedoman penanggulangan Leptospirosis Di Indonesia. Sub Ditrektorat Zoonosis. Direktorat Jenderal Pemberantasan Penyakit Menular dan Penyehatan lingkungan Dep Kes RI.
[33] Simanjuntak, G., Koesharjono, C. and Hardjoutomo, S. (1986) Leptospirosis di daerah transmigrasi Kuala Cinaku propinsi Riau tahun 1981. Penyakit Hewan, 18, 6-13.
[34] Priyanto, A., Hadisaputro, S., Santoso, L., Gasem, H. and Adi, S. (2008) Faktor-Faktor Risiko Yang Berpengaruh Terhadap Kejadian Leptospirosis (Studi Kasus di Kabupaten Demak). Universitas Diponegoro, Semarang.
[35] Haake, D.A., Dundoo, M., Cader, R., Kubak, B.M., Hartskeerl, R.A., Sejvar, J.J. and Ashford, D.A. (2002) Leptospirosis, Water Sports, and Chemoprophylaxis. Clinical Infectious Diseases, 34, 40-43.
[36] Ikawati, B. (2010) Analisis Karakteristik Lingkungan Pada Kejadian Leptospirosis di Kabupaten Demak Jawa Tengah Tahun 2009. Media Kesehatan Masyarakat Indonesia, 9, 33-40.
[37] Faine, S. (1982) Guidelines for the Control of Leptospirosis. Department of Microbiology Monash University, Melbourne, 1-200.
[38] Barcellos, C. and Sabroza, P.C. (2001) The Place behind the Case: Leptospirosis Risks and Associated Environmental Conditions in a Flood-Related Outbreak in Rio de Janeiro (O lugar do caso: Leptospirose e riscos associados a condiates ambientais durante o surto de 1996 na Zona Oeste do Rio de Janeiro). Cadernos de Saúde Pública, 17, 59-67.
[39] Urmimala, S. (2002) Population Based Case Control Investigation of Risk Factor for Leptospirosis during an Urban Epidemic. American Journal Tropical Medicine and Hygiene, Salvador, 605-610.
[40] Priyambodo, S. (1995) Pengendalian Hama Tikus Terpadu. PT Penebar Swadaya, Jakarta.
[41] Nurbeti, M. (2012) Kasus-Kasus Leptospirosis Di Perbatasan Kabupaten Bantul, Sleman, Dan Kulon Progo: Analisis Spasial. Universitas Gadjah Mada, Yogyakarta.                                                  eww150123lx
[42] Dinas Kesehatan Kabupaten Bantul (2012) Laporan Angka Kejadian Leptospira Tahun 2011. Bantul.

Remediation of the Contaminated Soils by Washing with an Aqueous Cysteamine Lixiviant

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53401#.VMCN3SzQrzE

ABSTRACT

In order to decrease the content of heavy metals in the crops soils, a novel method based on using an aqueous solution bearing cysteamine as the key ingredient was studied to extract the polluted heavy metals including Cd, Cu, Zn, Ni and Pb. By using the single-factor method, remediation-related technical index were screened and they are, respectively, applied to the solid material whereby the heavy metals are released and extracted from the solid material. The biomass solution residues remaining in the solid material after the heavy metal extraction procedure is rapidly biodegradable, so that no objectionable traces remain in the solid materials or soils.

Cite this paper

Liu, H. , Yan, Y. , Shao, D. , Li, D. and Zhang, Y. (2015) Remediation of the Contaminated Soils by Washing with an Aqueous Cysteamine Lixiviant. Journal of Materials Science and Chemical Engineering, 3, 1-4. doi: 10.4236/msce.2015.32001.

References

[1] Liu, P, Zhao, H.J., Wang, L.L., et al. (2011) Analysis of Heavy Metal Sources for Vegetable Soils from Shandong Pro- vince, China. Agricultural Sciences in China, 10, 109-119.
http://dx.doi.org/10.1016/S1671-2927(11)60313-1
[2] Boruvka, L., Vacek, O. and Jehlicka, J. (2005) Principal Component Analysis as a Tool to Indicate the Origin of Potentially Toxic Elements in Soils. Geoderma, 128, 289-300.
[3] Tang, X.J., Chen, C.F., Shi, D.Z., et al. (2010) Heavy Metal and Persistent Organic Compound Contamination in Soil from Wenling: An Emerging E-Waste Recycling City in Taizhou Area, China. Journal of Hazardous Materials, 173, 653-660. http://dx.doi.org/10.1016/j.jhazmat.2009.08.134
[4] Hjortenkrans, D.S., Bergback, B.T. and Haggerud, A. (2006) New Metal Emission Patterns in Road Traffic Environments. Environmental Monitoring and Assessment, 117, 85-98.
http://dx.doi.org/10.1007/s10661-006-7706-2
[5] Cao, X.D., Wabbi, A., Ma, L.Q., et al. (2009) Immobilization of Zn, Cu, and Pb in Contaminated Soils Using Phosphate Rock and Phosphoric Acid. Journal of Hazardous Materials, 164, 555-564.
http://dx.doi.org/10.1016/j.jhazmat.2008.08.034
[6] Yobouet, Y.A., Adouby, K., Trokourey, A., et al. (2010) Cadmium, Copper, Lead and Zinc Speciation in Contaminated Soils. International Journal of Engineering Science and Technology, 802-812.
[7] Wang, J.X., Feng, X.B., Anderson, C.W.N., et al. (2012) Remediation of Mercury Contaminated Sites—A Review. Journal of Hazardous Materials, 221-222, 1-18.
http://dx.doi.org/10.1016/j.jhazmat.2012.04.035
[8] Navarro, A., Canadas, I., Martinez, D., et al. (2009) Application of Solar Thermal Desorption to Remediation of Mercury-Contaminated Soils. Solar Energy, 83, 1405-1414.
http://dx.doi.org/10.1016/j.solener.2009.03.013
[9] Dermont, G., Bergeron, M., Mercier, G., et al. (2008) Soil Washing for Metal Removal: A Review of Physical/Che- mical Technologies and Field Applications. Journal of Hazardous Materials, 152, 1-31.
http://dx.doi.org/10.1016/j.jhazmat.2007.10.043
[10] Yeung, A.T. and Gu, Y.Y. (2011) A Review on Techniques to Enhance Electrochemical Remediation of Contaminated Soils. Journal of Hazardous Materials, 195, 11-29.                                                 eww150122lx
[11] Liu, L., Hu, S.-P., Chen, Y.-X., et al. (2010) Feasibility of Washing as a Remediation Technology for the Heavy Metals-Polluted Soils Left by Chemical Plan. Chinese Journal of Applied Ecology, 21, 1537-1541.

From Monoculture to Norfolk System: How the Number of Crops in Rotation Can Influence the Biodiversity of Arbuscular Mycorrhiza Assemblages in the Soil

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52759

ABSTRACT

Given the attention drawn since several decades by arbuscular mycorrhizal fungi (AMF) as potential biological alternatives to chemicals in a low-input agriculture, much effort has been spent in the investigation of mechanisms influencing the dynamics inside AMF communities. In the present study we evaluated the influence of different crop rotations on the AMF soil community, after a 50 y long-term field experiment established at Martonvásár, Hungary. Four types of crop rotation were chosen for sampling: corn monocropping, corn-alfalfa, corn-wheat, and corn-spring barley-peas-wheat. Community composition of AMF in soil was analyzed with a molecular approach amplifying a portion of 28S rDNA. The crop rotation practice didn’t show an influence on identity of the species composing AMF assemblages, but on the other hand seemed to affect positively the true diversity, defined as number of MOTUs present in the communities.

Cite this paper

Magurno, F. , Sasvári, Z. , Barchi, L. and Posta, K. (2014) From Monoculture to Norfolk System: How the Number of Crops in Rotation Can Influence the Biodiversity of Arbuscular Mycorrhiza Assemblages in the Soil. Open Journal of Ecology, 4, 1080-1088. doi: 10.4236/oje.2014.417088.

References

[1] Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. 3rd Edition, Academic Press, London.
[2] Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K. and Barca, J.M. (2003) The Contribution of Arbuscular Mycorrhizal Fungi in Sustainable Maintenance of Plant Health and Soil Fertility. Biology and Fertility of Soils, 37, 1-16.
[3] Wright, S.F., Green, V.S. and Cavigelli, M.A. (2007) Glomalin in Aggregate Size Classes from Three Different Farming Systems. Soil & Tillage Research, 94, 546-549.
http://dx.doi.org/10.1016/j.still.2006.08.003
[4] Ruiz-Lozano, J.M., Porcel, R. and Aroca, R. (2008) Evaluation of the Possible Participation of Drought-Induced Genes. In: Varma, A., Ed., The Enhanced Tolerance of Arbuscular Mycorrhizal Plants to Water Deficit, Mycorrhiza, Springer-Verlag, Berlin, 185-205.
[5] Atkinson, D., Baddeley, J.A., Goicoechea, N., Green, J., Sánchez-Díaz, M. and Watson, C.A. (2002) Arbuscular Mycorrhizal Fungi in Low Input Agriculture. In: Gianinazzi, S., Schüepp, H., Barea, J.M. and Haselwandter, K., Eds., Mycorrhizal Technology in Agriculture, Birkhauser, Basel, 211-222.
http://dx.doi.org/10.1007/978-3-0348-8117-3_17
[6] Verbruggen, E., Van der Heijden, M.G.A., Weedon, J.T., Kowalchuk, G.A. and Roling, W.F.M. (2012) Community Assembly, Species Richness and Nestedness of Arbuscular Mycorrhizal Fungi in Agricultural Soils. Molecular Ecology, 21, 2341-2353. http://dx.doi.org/10.1111/j.1365-294X.2012.05534.x
[7] Sasvári, Z., Hornok, L. and Posta, K. (2011) The Community Structure of Arbuscular Mycorrhizal Fungi in Roots of Corn Grown in a 50-Year Monoculture. Biology and Fertility of Soils, 47, 167-176.
http://dx.doi.org/10.1007/s00374-010-0519-z
[8] Borriello, R., Lumini, E., Girlanda, M., Bonfante, P. and Bianciotto, V. (2012) Effects of Different Management Practices on Arbuscular Mycorrhizal Fungal Diversity in Maize Fields by a Molecular Approach. Biology and Fertility of Soils, 48, 911-922. http://dx.doi.org/10.1007/s00374-012-0683-4
[9] Horton, T.R., and Bruns, T.D. (2001) The Molecular Revolution in Ectomycorrhizal Ecology: Peeking into the Black-Box. Molecular Ecology, 10, 1855-1871. http://dx.doi.org/10.1046/j.0962-1083.2001.01333.x
[10] Mathimaran, N., Ruh, R., Jama, B., Verchot, L., Frossard, E. and Jansa, J. (2007) Impact of Agricultural Management on Arbuscular Mycorrhizal Fungal Communities in Kenyan Ferralsol. Agriculture, Ecosystems & Environment, 119, 22-32.
http://dx.doi.org/10.1016/j.agee.2006.06.004
[11] Oehl, F., Sieverding, E., Ineichen, K., Mader, P., Wiemken, A. and Boller, T. (2009) Distinct Sporulation Dynamics of Arbuscular Mycorrhizal Fungal Communities from Different Agroecosystems in Long-Term Microcosms. Agriculture, Ecosystems & Environment, 134, 257-268. http://dx.doi.org/10.1016/j.agee.2009.07.008
[12] van Tuinen, D., Zhao, B. and Gianinazzi-Pearson, V. (1998) PCR in Studies of AM Fungi: From Primers to Application. In: Varma, A., Ed., Mycorrhiza Manual, Springer, Heidelberg, 387-399.
http://dx.doi.org/10.1007/978-3-642-60268-9_24
[13] van Tuinen, D., Jacquot, E., Zhao, B., Gollotte, A. and Gianinazzi-Pearson, V. (1998) Characterization of Root Colonization Profiles by a Microcosm Community of Arbuscular Mycorrhizal Fungi Using 25S rDNA-Targeted Nested PCR. Molecular Ecology, 7, 879-887.
http://dx.doi.org/10.1046/j.1365-294x.1998.00410.x
[14] da Silva, G.A., Lumini, E., Maia, L.C., Bonfante, P. and Bianciotto, V. (2006) Phylogenetic Analysis of Glomeromycota by Partial LSU rDNA Sequences. Mycorrhiza, 16, 183-189.
http://dx.doi.org/10.1007/s00572-005-0030-9
[15] Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al. (2009) Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75, 7537-7541.
http://dx.doi.org/10.1128/AEM.01541-09
[16] Rosselló-Mora, R. and Amann, R. (2001) The Species Concept for Prokaryotes. FEMS Microbiology Reviews, 25, 39-67. http://dx.doi.org/10.1016/S0168-6445(00)00040-1
[17] Cericola, F., Portis, E., Toppino, L., Barchi, L., Acciarri, N., Ciriaci, T., et al. (2013) The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin. PLoS ONE, 8, e73702.
http://dx.doi.org/10.1371/journal.pone.0073702
[18] Redecker, D., Schüssler, A., Stockinger, H., Stürmer, S.L., Morton, J.B. and Walker, C. (2013) An Evidence-Based Consensus for the Classification of Arbuscular Mycorrhizal Fungi (Glomeromycota). Mycorrhiza, 23, 515-531.
http://dx.doi.org/10.1007/s00572-013-0486-y
[19] Ijdo, M., Schtickzelle, N., Cranenbrouck, S. and Declerck, S. (2010) Do Arbuscular Mycorrhizal Fungi with Contrasting Life History Strategies Differ in Their Responses to Repeated Defoliation? FEMS Microbiology Ecology, 72, 114-122. Http://dx.doi.org/10.1111/j.1574-6941.2009.00829.x
[20] Opik, M., Vanatoa, A., Vanatoa, E., Moora, M., Davison, J., Kalwij, J.M., Reier, ü. and Zobel, M. (2010) The Online Database MaarjAM Reveals Global and Ecosystemic Distribution Patterns in Arbuscular Mycorrhizal Fungi (Glomeromycota). New Phytologist, 188, 223-241. http://dx.doi.org/10.1111/j.1469-8137.2010.03334.x
[21] Sanders, I.A. (2004) Plant and Arbuscular Mycorrhizal Fungal Diversity—Are We Looking at the Relevant Level of Diversity and Are We Using the Right Techniques? New Phytologist, 164, 415-418.
http://dx.doi.org/10.1111/j.1469-8137.2004.01208.x
[22] Rosendahl, S. and Stukenbrock, E.H. (2004) Community Structure of Arbuscular Mycorrhizal Fungi in Undisturbed Vegetation Revealed by Analyses of LSU rDNA Sequences. Molecular Ecology, 13, 3179-3186.
http://dx.doi.org/10.1111/j.1365-294X.2004.02295.x
[23] Opik, M., Moora, M., Liira, J. and Zobel, M. (2006) Composition of Root-Colonizing Arbuscular Mycorrhizal Fungal Communities in Different Ecosystems around the Globe. Journal of Ecology, 94, 778-790.
http://dx.doi.org/10.1111/j.1365-2745.2006.01136.x
[24] Rosendahl, S., McGee, P. and Morton, J.B. (2009) Lack of Global Population Genetic Differentiation in the Arbuscular Mycorrhizal Fungus Glomus mosseae Suggests a Recent Range Expansion Which May Have Coincided with the Spread of Agriculture. Molecular Ecology, 18, 4316-4329.
http://dx.doi.org/10.1111/j.1365-294X.2009.04359.x
[25] Balestrini, R., Magurno, F., Walker, C., Lumini, E. and Bianciotto, V. (2010) Cohorts of Arbuscular Mycorrhizal Fungi (AMF) in Vitis vinifera, a Typical Mediterranean Fruit Crop. Environmental Microbiology Reports, 2, 594-604.
http://dx.doi.org/10.1111/j.1758-2229.2010.00160.x
[26] Dumbrell, A.J., Nelson, M., Helgason, T., Dytham, C. and Fitter, A.H. (2010) Relative Roles of Niche and Neutral Processes in Structuring a Soil Microbial Community. The ISME Journal, 4, 337-345.
http://dx.doi.org/10.1038/ismej.2009.122
[27] Lekberg, Y., Schnoor, T., KjOller, R., Gibbons, S.M., Hansen, L.H., Al-Soud, W.A., Sorensen, S.J. and Rosendahl, S. (2012) 454-Sequencing Reveals Stochastic Local Reassembly and High Disturbance Tolerance within Arbuscular Mycorrhizal Fungal Communities. Journal of Ecology, 100, 151-160.
http://dx.doi.org/10.1111/j.1365-2745.2011.01894.x
[28] Tuomisto, H. (2011) Commentary: Do We Have a Consistent Terminology for Species Diversity? Yes, If We Choose to Use It. Oecologia, 167, 903-911. http://dx.doi.org/10.1007/s00442-011-2128-4
[29] Hart, M.M. and Reader, R.J. (2002) Taxonomic Basis for Variation in the Colonization Strategy of Arbuscular Mycorrhizal Fungi. New Phytologist, 153, 335-344. http://dx.doi.org/10.1046/j.0028-646X.2001.00312.x
[30] Higo, M., Isobe, K., Yamaguchi, M., Ishii, R., Drijber, R.A. and Jeske, E.S. (2013) Diversity and Vertical Distribution of Indigenous Arbuscular Mycorrhizal Fungi under Two Soybean Rotational Systems. Biology and Fertility of Soils, 49, 1085-1096. http://dx.doi.org/10.1007/s00374-013-0807-5
[31] Vandenkoornhuyse, P., Ridgway, K.P., Watson, I.J., Fitter, A.H. and Young, J.P.W. (2003) Co-Existing Grass Species Have Distinctive Arbuscular Mycorrhizal Communities. Molecular Ecology, 12, 3085-3095.
http://dx.doi.org/10.1046/j.1365-294X.2003.01967.x
[32] Helgason, T., Merryweather, J.W., Young, J.P.W. and Fitter, A.H. (2007) Specificity and Resilience in the Arbuscular Mycorrhizal Fungi of a Natural Woodland Community. Journal of Ecology, 95, 623-630.
http://dx.doi.org/10.1111/j.1365-2745.2007.01239.x                                                           eww141231lx

From Monoculture to Norfolk System: How the Number of Crops in Rotation Can Influence the Biodiversity of Arbuscular Mycorrhiza Assemblages in the Soil

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52759#.VKISZcCAM4

ABSTRACT

Given the attention drawn since several decades by arbuscular mycorrhizal fungi (AMF) as potential biological alternatives to chemicals in a low-input agriculture, much effort has been spent in the investigation of mechanisms influencing the dynamics inside AMF communities. In the present study we evaluated the influence of different crop rotations on the AMF soil community, after a 50 y long-term field experiment established at Martonvásár, Hungary. Four types of crop rotation were chosen for sampling: corn monocropping, corn-alfalfa, corn-wheat, and corn-spring barley-peas-wheat. Community composition of AMF in soil was analyzed with a molecular approach amplifying a portion of 28S rDNA. The crop rotation practice didn’t show an influence on identity of the species composing AMF assemblages, but on the other hand seemed to affect positively the true diversity, defined as number of MOTUs present in the communities.

Cite this paper

Magurno, F. , Sasvári, Z. , Barchi, L. and Posta, K. (2014) From Monoculture to Norfolk System: How the Number of Crops in Rotation Can Influence the Biodiversity of Arbuscular Mycorrhiza Assemblages in the Soil. Open Journal of Ecology, 4, 1080-1088. doi: 10.4236/oje.2015.417088.

References

[1] Smith, S.E. and Read, D.J. (2008) Mycorrhizal Symbiosis. 3rd Edition, Academic Press, London.
[2] Jeffries, P., Gianinazzi, S., Perotto, S., Turnau, K. and Barca, J.M. (2003) The Contribution of Arbuscular Mycorrhizal Fungi in Sustainable Maintenance of Plant Health and Soil Fertility. Biology and Fertility of Soils, 37, 1-16.
[3] Wright, S.F., Green, V.S. and Cavigelli, M.A. (2007) Glomalin in Aggregate Size Classes from Three Different Farming Systems. Soil & Tillage Research, 94, 546-549.
http://dx.doi.org/10.1016/j.still.2006.08.003
[4] Ruiz-Lozano, J.M., Porcel, R. and Aroca, R. (2008) Evaluation of the Possible Participation of Drought-Induced Genes. In: Varma, A., Ed., The Enhanced Tolerance of Arbuscular Mycorrhizal Plants to Water Deficit, Mycorrhiza, Springer-Verlag, Berlin, 185-205.
[5] Atkinson, D., Baddeley, J.A., Goicoechea, N., Green, J., Sánchez-Díaz, M. and Watson, C.A. (2002) Arbuscular Mycorrhizal Fungi in Low Input Agriculture. In: Gianinazzi, S., Schüepp, H., Barea, J.M. and Haselwandter, K., Eds., Mycorrhizal Technology in Agriculture, Birkhauser, Basel, 211-222.
http://dx.doi.org/10.1007/978-3-0348-8117-3_17
[6] Verbruggen, E., Van der Heijden, M.G.A., Weedon, J.T., Kowalchuk, G.A. and Roling, W.F.M. (2012) Community Assembly, Species Richness and Nestedness of Arbuscular Mycorrhizal Fungi in Agricultural Soils. Molecular Ecology, 21, 2341-2353. http://dx.doi.org/10.1111/j.1365-294X.2012.05534.x
[7] Sasvári, Z., Hornok, L. and Posta, K. (2011) The Community Structure of Arbuscular Mycorrhizal Fungi in Roots of Corn Grown in a 50-Year Monoculture. Biology and Fertility of Soils, 47, 167-176.
http://dx.doi.org/10.1007/s00374-010-0519-z
[8] Borriello, R., Lumini, E., Girlanda, M., Bonfante, P. and Bianciotto, V. (2012) Effects of Different Management Practices on Arbuscular Mycorrhizal Fungal Diversity in Maize Fields by a Molecular Approach. Biology and Fertility of Soils, 48, 911-922. http://dx.doi.org/10.1007/s00374-012-0683-4
[9] Horton, T.R., and Bruns, T.D. (2001) The Molecular Revolution in Ectomycorrhizal Ecology: Peeking into the Black-Box. Molecular Ecology, 10, 1855-1871. http://dx.doi.org/10.1046/j.0962-1083.2001.01333.x
[10] Mathimaran, N., Ruh, R., Jama, B., Verchot, L., Frossard, E. and Jansa, J. (2007) Impact of Agricultural Management on Arbuscular Mycorrhizal Fungal Communities in Kenyan Ferralsol. Agriculture, Ecosystems & Environment, 119, 22-32.
http://dx.doi.org/10.1016/j.agee.2006.06.004
[11] Oehl, F., Sieverding, E., Ineichen, K., Mader, P., Wiemken, A. and Boller, T. (2009) Distinct Sporulation Dynamics of Arbuscular Mycorrhizal Fungal Communities from Different Agroecosystems in Long-Term Microcosms. Agriculture, Ecosystems & Environment, 134, 257-268. http://dx.doi.org/10.1016/j.agee.2009.07.008
[12] van Tuinen, D., Zhao, B. and Gianinazzi-Pearson, V. (1998) PCR in Studies of AM Fungi: From Primers to Application. In: Varma, A., Ed., Mycorrhiza Manual, Springer, Heidelberg, 387-399.
http://dx.doi.org/10.1007/978-3-642-60268-9_24
[13] van Tuinen, D., Jacquot, E., Zhao, B., Gollotte, A. and Gianinazzi-Pearson, V. (1998) Characterization of Root Colonization Profiles by a Microcosm Community of Arbuscular Mycorrhizal Fungi Using 25S rDNA-Targeted Nested PCR. Molecular Ecology, 7, 879-887.
http://dx.doi.org/10.1046/j.1365-294x.1998.00410.x
[14] da Silva, G.A., Lumini, E., Maia, L.C., Bonfante, P. and Bianciotto, V. (2006) Phylogenetic Analysis of Glomeromycota by Partial LSU rDNA Sequences. Mycorrhiza, 16, 183-189.
http://dx.doi.org/10.1007/s00572-005-0030-9
[15] Schloss, P.D., Westcott, S.L., Ryabin, T., Hall, J.R., Hartmann, M., Hollister, E.B., et al. (2009) Introducing Mothur: Open-Source, Platform-Independent, Community-Supported Software for Describing and Comparing Microbial Communities. Applied and Environmental Microbiology, 75, 7537-7541.
http://dx.doi.org/10.1128/AEM.01541-09
[16] Rosselló-Mora, R. and Amann, R. (2001) The Species Concept for Prokaryotes. FEMS Microbiology Reviews, 25, 39-67. http://dx.doi.org/10.1016/S0168-6445(00)00040-1
[17] Cericola, F., Portis, E., Toppino, L., Barchi, L., Acciarri, N., Ciriaci, T., et al. (2013) The Population Structure and Diversity of Eggplant from Asia and the Mediterranean Basin. PLoS ONE, 8, e73702.
http://dx.doi.org/10.1371/journal.pone.0073702
[18] Redecker, D., Schüssler, A., Stockinger, H., Stürmer, S.L., Morton, J.B. and Walker, C. (2013) An Evidence-Based Consensus for the Classification of Arbuscular Mycorrhizal Fungi (Glomeromycota). Mycorrhiza, 23, 515-531.
http://dx.doi.org/10.1007/s00572-013-0486-y
[19] Ijdo, M., Schtickzelle, N., Cranenbrouck, S. and Declerck, S. (2010) Do Arbuscular Mycorrhizal Fungi with Contrasting Life History Strategies Differ in Their Responses to Repeated Defoliation? FEMS Microbiology Ecology, 72, 114-122. Http://dx.doi.org/10.1111/j.1574-6941.2009.00829.x
[20] Opik, M., Vanatoa, A., Vanatoa, E., Moora, M., Davison, J., Kalwij, J.M., Reier, ü. and Zobel, M. (2010) The Online Database MaarjAM Reveals Global and Ecosystemic Distribution Patterns in Arbuscular Mycorrhizal Fungi (Glomeromycota). New Phytologist, 188, 223-241. http://dx.doi.org/10.1111/j.1469-8137.2010.03334.x
[21] Sanders, I.A. (2004) Plant and Arbuscular Mycorrhizal Fungal Diversity—Are We Looking at the Relevant Level of Diversity and Are We Using the Right Techniques? New Phytologist, 164, 415-418.
http://dx.doi.org/10.1111/j.1469-8137.2004.01208.x
[22] Rosendahl, S. and Stukenbrock, E.H. (2004) Community Structure of Arbuscular Mycorrhizal Fungi in Undisturbed Vegetation Revealed by Analyses of LSU rDNA Sequences. Molecular Ecology, 13, 3179-3186.
http://dx.doi.org/10.1111/j.1365-294X.2004.02295.x
[23] Opik, M., Moora, M., Liira, J. and Zobel, M. (2006) Composition of Root-Colonizing Arbuscular Mycorrhizal Fungal Communities in Different Ecosystems around the Globe. Journal of Ecology, 94, 778-790.
http://dx.doi.org/10.1111/j.1365-2745.2006.01136.x
[24] Rosendahl, S., McGee, P. and Morton, J.B. (2009) Lack of Global Population Genetic Differentiation in the Arbuscular Mycorrhizal Fungus Glomus mosseae Suggests a Recent Range Expansion Which May Have Coincided with the Spread of Agriculture. Molecular Ecology, 18, 4316-4329.
http://dx.doi.org/10.1111/j.1365-294X.2009.04359.x
[25] Balestrini, R., Magurno, F., Walker, C., Lumini, E. and Bianciotto, V. (2010) Cohorts of Arbuscular Mycorrhizal Fungi (AMF) in Vitis vinifera, a Typical Mediterranean Fruit Crop. Environmental Microbiology Reports, 2, 594-604.
http://dx.doi.org/10.1111/j.1758-2229.2010.00160.x
[26] Dumbrell, A.J., Nelson, M., Helgason, T., Dytham, C. and Fitter, A.H. (2010) Relative Roles of Niche and Neutral Processes in Structuring a Soil Microbial Community. The ISME Journal, 4, 337-345.
http://dx.doi.org/10.1038/ismej.2009.122
[27] Lekberg, Y., Schnoor, T., KjOller, R., Gibbons, S.M., Hansen, L.H., Al-Soud, W.A., Sorensen, S.J. and Rosendahl, S. (2012) 454-Sequencing Reveals Stochastic Local Reassembly and High Disturbance Tolerance within Arbuscular Mycorrhizal Fungal Communities. Journal of Ecology, 100, 151-160.
http://dx.doi.org/10.1111/j.1365-2745.2011.01894.x
[28] Tuomisto, H. (2011) Commentary: Do We Have a Consistent Terminology for Species Diversity? Yes, If We Choose to Use It. Oecologia, 167, 903-911. http://dx.doi.org/10.1007/s00442-011-2128-4
[29] Hart, M.M. and Reader, R.J. (2002) Taxonomic Basis for Variation in the Colonization Strategy of Arbuscular Mycorrhizal Fungi. New Phytologist, 153, 335-344. http://dx.doi.org/10.1046/j.0028-646X.2001.00312.x
[30] Higo, M., Isobe, K., Yamaguchi, M., Ishii, R., Drijber, R.A. and Jeske, E.S. (2013) Diversity and Vertical Distribution of Indigenous Arbuscular Mycorrhizal Fungi under Two Soybean Rotational Systems. Biology and Fertility of Soils, 49, 1085-1096. http://dx.doi.org/10.1007/s00374-013-0807-5
[31] Vandenkoornhuyse, P., Ridgway, K.P., Watson, I.J., Fitter, A.H. and Young, J.P.W. (2003) Co-Existing Grass Species Have Distinctive Arbuscular Mycorrhizal Communities. Molecular Ecology, 12, 3085-3095.
http://dx.doi.org/10.1046/j.1365-294X.2003.01967.x
[32] Helgason, T., Merryweather, J.W., Young, J.P.W. and Fitter, A.H. (2007) Specificity and Resilience in the Arbuscular Mycorrhizal Fungi of a Natural Woodland Community. Journal of Ecology, 95, 623-630.
http://dx.doi.org/10.1111/j.1365-2745.2007.01239.x                                                                       eww141230lx

Use of Sequential, Single and Kinetic Extractive Schemes to Assess Cadmium (Cd) and Lead (Pb) Availability in Vietnamese Urban Soils

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52239#.VIpIMsnQrzE

ABSTRACT

Modified BCR sequential extraction, single equilibrium-based EDTA extraction and kinetic fractionation were used for estimating the Pb and Cd availability in a series of soil samples from 3 sites located in urban areas of Hanoi (Vietnam). These schemes were compared to identify a simple, rapid and cheap protocol for routine estimation of Pb and Cd remobilizable fraction and the related potential risk. The comparison of these three approaches revealed their convergence in terms of mobility patterns observed for Pb and Cd. Cd was characterized by higher extractibality and mobility whatever the approach. Pb was distinguished of Cd by its high association to Feoxides, lower extractability, lower rate of desorption and then lower mobility. For this environmental scenario, EDTA single scheme at equilibrium could be suggested as the best suited and a simple protocol for determination of the labile pool of Cd and Pb. The pseudo-total concentrations of Pb and Cd are actually below the Vietnamese standard level, contrary to the results obtained by other authors for agricultural soils at other urban sites of Hanoi.

Cite this paper

Manouchehri, N. , Nguyen, T. , Besancon, S. , Le, L. and Bermond, A. (2014) Use of Sequential, Single and Kinetic Extractive Schemes to Assess Cadmium (Cd) and Lead (Pb) Availability in Vietnamese Urban Soils. American Journal of Analytical Chemistry, 5, 1214-1227. doi: 10.4236/ajac.2014.517128.

References

[1] MONR. (2010) National Environmental Report Vietnam Environmental Review. Ministry of Natural Resources and Environment, Hanoi, 232.
[2] Huong, N.T.L., Ohtsubo, M. and Higashi, T (2007) Mobility of Heavy Metals in the Sediment of the To Lich River and the Kim Nguu River in Hanoi City. Journal of the Faculty of Agriculture, 52, 179-185.
[3] Ure, A.M. (1991) Trace Element Speciation in Soils, Soil Extracts and Solutions. Microchimica Acta, 104, 49-57.
http://dx.doi.org/10.1007/BF01245495
[4] Templeton, D.M., Ariese, F., Cornelis, R., Danielsson, L.G., Muntau, H., Van Leeuwen, H. and Lobinski, R. (2000) Guidelines for Terms Related to Chemical Speciation and Fractionation of Elements: Definitions, Structural Aspects, and Methodological Approaches. Pure and Applied Chemistry, 72, 1453-1470.
http://dx.doi.org/10.1351/pac200072081453
[5] Anju, M. and Banerjee, D. (2011) Associations of Cadmium, Zinc, and Lead in Soils from a Lead and Zinc Mining Area as Studied by Single and Sequential Extractions. Environmental Monitoring and Assessment, 176, 67-85.
http://dx.doi.org/10.1007/s10661-010-1567-4
[6] Huang, Z.Y., Chen, T., Yu, J. and Qin, D.-P. and Chen, L. (2011) Lead Contamination and Its Potential Sources in Vegetables and Soils of Fujian, China. Environmental Geochemistry and Health, 34, 55-65.
http://dx.doi.org/10.1007/s10653-011-9390-6
[7] Little, M.G. and Lee, C.T.A. (2010) Sequential Extraction of Labile Elements and Chemical Characterization of a Basaltic Soil from Mt. Meru, Tanzania. Sequential Extraction of Labile Elements and Chemical Characterization of a Basaltic Soil from Mt. Meru, Tanzania. Journal of African Earth Sciences, 57, 444-454.
http://dx.doi.org/10.1016/j.jafrearsci.2009.12.001
[8] Rao, C.R.M., Sahuquillo, A. and Lopez-Sanchez, J.F. (2008) A Review of the Different Methods Applied in Environmental Geochemistry for Single and Sequential Extraction of Trace Elements in Soils and Related Materials. Water, Air, & Soil Pollution, 189, 291-333.
http://dx.doi.org/10.1007/s11270-007-9564-0
[9] Rao, C.R.M., Sahuquillo, A. and Lopez-Sanchez, J.F. (2010) Comparison of Single and Sequential Extraction Procedures for the Study of Rare Earth Elements Remobilisation in Different Types of Soils. Analytica Chimica Acta, 662, 128-136.
http://dx.doi.org/10.1016/j.aca.2010.01.006
[10] Rauret, G. (1998) Extraction Procedures for the Determination of Heavy Metals in Contaminated Soil and Sediment. Talanta, 46, 449-455.
http://dx.doi.org/10.1016/S0039-9140(97)00406-2
[11] Roulier, J.L., Belaud, S. and Coquery, M. (2010) Comparison of Dynamic Mobilization of Co, Cd and Pb in Sediments Using DGT and Metal Mobility Assessed by Sequential Extraction. Chemosphere, 79, 839-843.
http://dx.doi.org/10.1016/j.chemosphere.2010.02.056
[12] Zemberyová, M., Barteková, J. and Hagarová, I. (2006) The Utilization of Modified BCR Three-Step Sequential Extraction Procedure for the Fractionation of Cd, Cr, Cu, Ni, Pb and Zn in Soil Reference Materials of Different Origins. Talanta, 70, 973-978.
http://dx.doi.org/10.1016/j.talanta.2006.05.057
[13] Zhu, Q.H., Huang, D.Y., Liu, S.L., Luo, Z.C., Zhu, H.H., Zhou, B., Lei, M., Rao, X.M. and Cao, X.L. (2012) Assessment of Single Extraction Methods for Evaluating the Immobilization Effect of Amendments on Cadmium in Contaminated Acidic Paddy Soil. Plant Soil and Environment, 58, 98-103.
[14] Quevauviller, P., Rauret, G. and Griepink, B. (1993) Single and Sequential Extraction in Sediments and Soils. International Journal of Environmental Analytical Chemistry, 51, 231-235.
http://dx.doi.org/10.1080/03067319308027629
[15] Mossop, K.F. and Davidson, C.M. (2003) Comparison of Original and Modified BCR Sequential Extraction Procedures for the Fractionation of Copper, Iron, Lead, Manganese and Zinc in Soils and Sediments. Analytica Chimica Acta, 478, 111-118.
http://dx.doi.org/10.1016/S0003-2670(02)01485-X
[16] Rauret, G., Lopez-Sanchez, J.F., Sahuquillo, A., Rubio, R., Davidson, C., Ure, A.M. and Quevauviller, P. (1999) Improvement of the BCR Three Step Sequential Extraction Procedure Prior to the Certification of New Sediment and Soil Reference Materials. Journal of Environmental Monitoring, 1, 57-61.
http://dx.doi.org/10.1039/a807854h
[17] Ure, A.M., Quevauviller P., Muntau, H. and Griepink, B. (1993) Speciation of Heavy Metals in Soils and Sediments. An Account of the Improvement and Harmonization of Extraction Techniques Undertaken under the Auspices of the BCR of the Commission of the European Communities. International Journal of Environmental Analytical Chemistry, 51, 135-151.
http://dx.doi.org/10.1080/03067319308027619
[18] Manouchehri, N. and Bermond, A. (2006) Study of Trace Metal Partitioning between Soil-EDTA Extracts and Chelex-100 Resin. Analytica Chemica Acta, 557, 337-343.
[19] Singh, S.P., Tack, F.M.G. and Verloo, M.G. (1996) Solid-Phase Distribution of Heavy Metals as Affected by Single Reagent Extraction in Dredged Sediment Derived Surface Soils. Chemical Speciation and Bioavailability, 8, 105-110.
[20] Alvarez, J.M., Lopez-Valdivia, L.M., Novillo, J., Obrador, A. and Rico, M.I. (2006) Comparison of EDTA and Sequential Extraction Tests for Phytoavailability Prediction of Manganeses and Zinc in Agricultural Alkaline Soils. Geoderma, 132, 450-463.
http://dx.doi.org/10.1016/j.geoderma.2005.06.009
[21] Manouchehri, N. and Bermond, A. (2009) EDTA in Soil Science: A Review of Its Application in Soil Trace Metal Investigations. Terrestrial and Aquatic Environmental Technology, 3, 1-15.
[22] Ghestem, J.P. (1997) Extraction par l’edta de metaux traces de sols pollues; application a l’etude de la faisabilite d’une speciation de ces metaux. PhD Thesis, Thèse Université de Paris 7 Denis Diderot, Paris.
[23] Bermond, A., Ghestem, J.P. and Yousfi, I. (1998) Kinetic Approach to the Chemical Speciation of Trace Metals in Soils. Analyst, 123, 785-790.
http://dx.doi.org/10.1039/a707776i
[24] Fangueiro, D., Bermond, A., Santos, E., Carapuca, H. and Duarte, A. (2002) Heavy Metal Mobility Assessment in Sediments Based on a Kinetic Approach of the EDTA Extraction: Search for Optimal Experimental Conditions. Analytica Chimica Acta, 459, 245-256.
http://dx.doi.org/10.1016/S0003-2670(02)00134-4
[25] Wasay, S.A., Barrington, S.F., Tokunagal, S. and Prasher, S. (2007) Kinetics of Heavy Metal Desorption from Three Soils Using Citric Acid, Tartaric Acid, and EDTA. Journal of Environmental Engineering and Science, 6, 611-622.
[26] Manouchehri, N., Besancon, S. and Bermond, A. (2011) Kinetic Characterizing of Soil Trace Metal Availability Using Soil/EDTA/Chelex Mixture. Chemosphere, 83, 997-1004.
http://dx.doi.org/10.1016/j.chemosphere.2011.02.010
[27] Iqbal, M., Lamy, I. and Bermond, A. (2013) Impact of Miscanthus Cultivation on Trace Metal Availability in Contaminated Agricultural Soils: Complementary Insights from Kinetic Extraction and Physical Fractionation. Chemosphere, 91, 287-294.
http://dx.doi.org/10.1016/j.chemosphere.2012.11.032
[28] Harper, M.P., Davison, W., Zhang, H. and Tych, W. (1998) Kinetics of Metal Exchange between Solids and Solutions in Sediments and Soils Interpreted from DGT Measured Fluxes. Geochimicaet Cosmochimica Acta, 62, 2757-2770.
http://dx.doi.org/10.1016/S0016-7037(98)00186-0
[29] Ernstberger, H., Zhang, H., Tye, A.M., Young, S. and Davison, W. (2005) Desorption Kinetics of Cd, Zn and Ni Measured in Soils by DGT. Environmental Science and Technology, 39, 1591-1597.
http://dx.doi.org/10.1021/es048534d
[30] Manouchehri, N., Besancon, S. and Bermond, A. (2006) Major and Trace Metal Extraction from Soil by EDTA: Equilibrium and Kinetic Studies. Analytica Chimica Acta, 559, 105-112.
http://dx.doi.org/10.1016/j.aca.2005.11.050
[31] Huong, N.T.L., Ohtsubo, M., Li, L., Higashi, T. and Kanayama, M. (2010) Heavy-Metal Contamination of Soil and Vegetables in Wastewater Irrigated Agricultural Soil in a Suburban Area of Hanoi, Vietnam. Communications in Soil Science and Plant Analysis, 41, 390-407.
http://dx.doi.org/10.1080/00103620903494350
[32] Huong, N.T.L., Ohtsubo, M., Higashi, T. and Kanayama, M. (2012) Heavy Metal Concentration in Sediments of the Nhue River and Its Water-Irrigated Farmland Soil in the Suburbs of Hanoi, Vietnam. Soil and Sediment Contamination: An International Journal, 21, 364-381.
http://dx.doi.org/10.1080/15320383.2012.649379
[33] Vietnam Standard (2002) Soil Quality-Maximum Allowable Limits of Heavy Metals in the Soil.
[34] Mench, M., Baize, D. and Mocquot, B. (1997) Cadmium Availability to Wheat in Five Soil Series from the Yonne District, Burgundy, France. Environmental Pollution, 95, 93-103.
http://dx.doi.org/10.1016/S0269-7491(96)00078-4
[35] Kuo, S., Heilman, P.E. and Baker, A.S. (1993) Distribution and Forms of Copper, Zinc, Cadmium, Iron, and Manganese in Soils Near a Copper Smelter1. Soil Science, 135, 101-109.
http://dx.doi.org/10.1097/00010694-198302000-00004
[36] Knight, B.P., Chaudri, A.M., McGrath, S.P. and Giller, K.E. (1998) Determination of Chemical Availability of Cadmium and Zinc in Soils Using Inert Soil Moisture Samplers. Environmental Pollution, 99, 293-298.
http://dx.doi.org/10.1016/S0269-7491(98)00021-9
[37] Moreno-Jiménez, E., Penalosa, J.M., Manzano, R., Carpena-Ruiz, R.O., Gamarra, R. and Esteban, E. (2009) Heavy Metals Distribution in Soils Surrounding an Abandoned Mine in NW Madrid (Spain) and Their Transference to Wild Flora. Journal of Hazardous Materials, 162, 854-859.
http://dx.doi.org/10.1016/j.jhazmat.2008.05.109
[38] Stone, M. and Marsalek, J. (1996) Trace Metal Composition and Speciation in Street Sediment: Sault Ste. Marie, Canada. Water Air and Soil Pollution, 87, 149-169.
http://dx.doi.org/10.1007/BF00696834
[39] Deuel, L.E. and Holliday, G.H. (1998) Geochemical Partitioning of Metals in Spent Drilling Fluid Solids. Journal of Energy Resources Technology, 120, 208-214.
http://dx.doi.org/10.1115/1.2795037
[40] Farkas, A., Erratico, C. and Viagna, L. (2007) Assessment of the Environmental Significance of Heavy Metal Pollution in Surficial Sediments of the River Po. Chemosphere, 68, 761-768.
http://dx.doi.org/10.1016/j.chemosphere.2006.12.099
[41] Tejowulan, R.S. and Hendershot, W.H. (1998) Removal of Trace Metals from Contaminated Soils Using EDTA Incorporating Resin Trapping Techniques. Environmental Pollution, 103, 135-142.
http://dx.doi.org/10.1016/S0269-7491(98)00080-3
[42] Varrault, G. (2001) Etude cinétique de l’extraction des métaux traces des sols; application à l’évaluation de l’efficacité de techniques de réhabilitation in situ. Thèse Université Paris 7, Paris.
[43] McGrath, D. (1996) Application of Single and Sequential Extraction Procedures to Polluted and Unpolluted Soils. Science of the Total Environment, 178, 37-44.
http://dx.doi.org/10.1016/0048-9697(95)04795-6
[44] Banat, K.M., Howari, F.M. and Tomah, M.M. (2007) Chemical Fractionation and Heavy Metal Distribution in Agricultural Soils, North of Jordan Valley. Soil and Sediment Contamination, 16, 89-107.
[45] Labanowski, J., Monna, F., Bermond, A., Cambier, P., Fernandez, C., Lamy, I. and van Oort, F. (2008) Kinetic Extractions to Assess Mobilization of Zn, Pb, Cu, and Cd in a Metal Contaminated Soil: EDTA vs. Citrate. Environmental Pollution, 152, 693-701.
http://dx.doi.org/10.1016/j.envpol.2007.06.054
[46] Gandois, L., Probst, A. and Dumat, C. (2010) Modelling Trace Metal Extractability and Solubility in French Forest Soils by Using Soil Properties. European Journal of Soil Science, 61, 271-286.
http://dx.doi.org/10.1111/j.1365-2389.2009.01215.x
[47] Chrastny, V., Komárek, M., Jrovcová, E. and Stíchová, J. (2008) A Critical Evaluation of the 0.05 M EDTA Extraction of Pb from Forest Soils. International Journal of Environmental Analytical Chemistry, 88, 385-396.
http://dx.doi.org/10.1080/03067310701744283
[48] Korf, E.P., Consoli, N.C., Tímbola, R.S. and Santos, G.C. (2011) Metal Transport Parameters in Residual Soil with an Undisturbed and Remolded Structure Percolated by an Acid Solution. Journal of Environment Protection, 2, 1076-1083.
http://dx.doi.org/10.4236/jep.2011.28124
[49] Makovníková, J. and Barancíková, G. (2009) Assessment of Transport Risk of Cadmium and Lead on the Basis of Immobilisation Capability of Soil. Soil and Water Research, 1, 10-16.
[50] Papassiopi, N., Skoufadis, C., Tambouris, S. and Kontopoulos, A. (1998) Integrated Leaching Processes for the Removal of Heavy Metals from Heavily Contaminated Soils. Thomas Telford, London, 461-470.
[51] Theodoratos, P., Papassiopi, N., Georgoudis, T. and Kontopoulos, A. (2000) Selective Removal of Lead from Calcareous Polluted Soils Using the Ca-EDTA Salt. Water Air and Soil Pollution, 122, 351-368.
http://dx.doi.org/10.1023/A:1005295119231
[52] Chakraborty, P. (2012) Speciation of Co, Ni and Cu in the Coastal and Estuarine Sediments: Some Fundamental Characteristics. Journal of Geochemical Exploration. 115, 13-23.
http://dx.doi.org/10.1016/j.gexplo.2012.01.008
[53] Mallmanna, F.J.K., Santosa, D.R., Cambier, P., Labanowski, J., Lamy, I., Santannad, M.A., Tessier, D. and van Oort, F. (2012) Using a Two Site-Reactive Model for Simulating One Century Changes of Zn and Pb Concentration Profiles in Soils Affected by Metallurgical Fallout. Environmental Pollution, 162, 294-302.
http://dx.doi.org/10.1016/j.envpol.2011.11.039
[54] Santos, S., Costa, C.A.E., Duarte, A.C., Scherer, H.W., Schneider, R.J., Esteves, V.I. and Santos, E.B.H. (2010) Influence of Different Organic Amendments on the Potential Availability of Metals from Soil: A Study on Metal Fractionation and Extraction Kinetics by EDTA. Chemosphere, 78. 389-396.
http://dx.doi.org/10.1016/j.chemosphere.2009.11.008
[55] Bermond, A., Varrault, G., Sappin-Didier, V. and Mench, M. (2005) A Kinetic Approach to Predict Soil Trace Metal Bioavailability: Preliminary Results. Plant and Soil, 275, 21-29.
http://dx.doi.org/10.1007/s11104-004-7599-1
[56] Barona, A. and Romero, F. (1996) Fractionation of Lead in Soils and Its Influence on the Extractive Cleaning with EDTA. Environmental Technology, 17, 63-70.
http://dx.doi.org/10.1080/09593331708616361
[57] Herbert, R.B. (1997) Partitioning of Heavy Metals in Podzol Soils Contaminated by Mine Drainage Waters, Dalarna, Sweden. Water Air and Soil Pollution, 96, 39-59.
http://dx.doi.org/10.1007/BF02407195
[58] Raksasataya, M., Langdon, A.G. and Kim, N.D. (1996) Assessment of the Extent of Lead Redistribution during Sequential Extraction by Two Different Methods. Analytica Chimica Acta, 332, 1-14.
http://dx.doi.org/10.1016/0003-2670(96)00227-9
[59] Kim, C., Lee, Y. and Ong, S.K. (2003) Factors Affecting EDTA Extraction of Lead from Lead-Contaminated Soils. Chemosphere, 51, 845-853.
http://dx.doi.org/10.1016/S0045-6535(03)00155-3                                                                   eww141212lx