Syrup versus Drops of Iron III Hydroxide Polymaltose in the Treatment of Iron Deficiency Anemia of Infancy

Read  full  paper  at:http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54087#.VO1zHizQrzE

Background: Iron deficiency anemia in infants is the most common micronutrient deficiency worldwide. The main cause is low iron intake in the presence of accelerated physiologic growth rate. Objective: The current study aimed at prospectively comparing the efficacy of iron III hydroxide polymaltose syrup (IPS) versus iron III hydroxide polymaltose drops (IPD) in treating iron deficiency among infants attending the hematology outpatient clinic. Our hypothesis was that IPS would be less effective possibly related to the difficulty of giving the medication. Methods: Participants diagnosed with iron deficiency anemia between 11-24 months were randomly assigned to receive either IPS or IPD for 3 months. The main outcome parameter was hemoglobin blood level, while the secondary outcome parameters were: 1) iron; 2) ferritin; 3) transferrin (i.e. total iron binding capacity); 4) mean corpuscular volume; and 5) red blood cell distribution width. Results: Out of the 104 recruited infants, 55 (52%) completed the study: 29 in the IPS group and26 inthe IPD group. There was no significant difference in the main outcome parameter at either 1 or 3 months of treatment: mean hemoglobin was 10.5 versus 10.7 g/dL within a 1 month treatment, P = 0.4; mean hemoglobin was 11.0 versus 11.1 g/dL within a 3 months of treatment, P = 0.59. Likewise, no significant differences were found with respect to the occurrence of side effects. Conclusion: Oral IPD and IPS are equally effective in treating iron deficiency anemia in infants aged 11 – 24 months.

Cite this paper

Yahav, A. , Kaplinsky, C. , Glatstein, M. , Shachter, Y. , Simmonds, A. , Shiff, Y. , Scolnik, D. and Sharon, N. (2015) Syrup versus Drops of Iron III Hydroxide Polymaltose in the Treatment of Iron Deficiency Anemia of Infancy. Open Journal of Pediatrics, 5, 34-38. doi: 10.4236/ojped.2015.51007.

References

[1] Bopche, A.V., Dwiverdi, R., Mishra, R., et al. (2009) Ferrous Sulfate versus Iron Polymaltose Complex for Treatment of Iron Deficiency Anemia in Children. Indian Pediatrics, 46, 883-885.
[2] DeMaeyer, E. and Adiels-Tegman, M. (1985) The Prevalence of Anaemia in the World. World Health Statistics Quarterly, 38, 302-316.
[3] Meyerovitch, J., Sherf, M., Antebi, F., Barhoum-Noufi, M., Horev, Z., Jaber, L., Weiss, D. and Koren, A. (2006) The Incidence of Anemia in an Israeli Population: A Population Analysis for Anemia in 34,512 Israeli Infants Aged 9 to 18 Months. Pediatrics, 118, e1055-e1060. http://dx.doi.org/10.1542/peds.2006-0024
[4] Lozoff, B., De Andraca, I., Castillo, M., et al. (2003) Behavioral and Developmental Effects of Preventing Iron Deficiency Anemia in Healthy Full Term Infants. Pediatrics, 112, 846-854.
[5] Jaber, L., Tamary, H., et al. (2010) Iron Polymatose versus Ferrous Gluconate in the Prevention of Iron Deficiency Anemia of Infancy. Journal of Pediatric Hematology/Oncology, 32, 585-588.
http://dx.doi.org/10.1097/MPH.0b013e3181ec0f2c
[6] Wright, C.M., Kelly, J., Trail, A., Parkinson, K.N. and Summerfield, G. (2004) The Diagnosis of Borderline Iron Deficiency: Results of a Therapeutic Trial. Archives of Disease in Childhood, 89, 1028-1031. http://dx.doi.org/10.1136/adc.2003.047407
[7] Lozoff, B., Jimenez, E. and Wolf, A.W. (1991) Long Term Development Outcome of Infants with Iron Deficiency. The New England Journal of Medicine, 325, 687-694.
http://dx.doi.org/10.1056/NEJM199109053251004
[8] Pizarro, F., Yip, R., Dallman, P.R., et al. (1991) Iron Status with Different Infant Feeding Regimens: Relevance to Screening and Prevention of Deficiency. Journal of Pediatrics, 118, 687-692.
http://dx.doi.org/10.1016/S0022-3476(05)80027-7
[9] Glazer, Y. and Bilenko, N. (2010) Effect of Iron Deficiency and Iron Deficiency Anemia in the First Two Years of Life on Cognitive and Mental Development during Childhood. Harefuah, 149, 309-314, 335.
[10] Mujica-Coopman, M.F., Borja, A., Pizarro, F. and Olivares, M. (2015) Effect of Daily Supplementation with Iron and Zinc on Iron Status of Childbearing Age Women. Biological Trace Element Research.
[11] Devaki, P.B., Chandra, R.K. and Geisser, P. (2008) Effects of Oral Supplementation with Iron (III) Hydroxide Polymaltose Complex on the Hematological Profile of Adolescents with Varying Iron Status. Arzneimittel-Forschung, 58, 389-397.
[12] Nestel, P. and Alnwick, D. (1996) Iron-Micronutrient Supplements for Young Children. Summary and Conclusions of a Consultation Held at UNICEF, Copenhagen, 19-20 August 1996.
[13] Borbolla, J.R., Cicero, R.E., Dibildox, M.M., Sotres, D.R. and Gutierrez, R.G. (2000) IPC vs. Iron Sulphate in the Treatment of Iron Deficiency in Infants. Rev Mex Padiatr, 67, 63-67.
[14] Jacobs, P. (1984) Oral Iron Therapy in Human Subjects: Comparative Absorption between Ferrous Salts and Iron Polymaltose. Journal of Medicine, 3, 387-377.
[15] Ortiz, R., Toblli, J.E., Romero, J.D., Monterrosa, B., Frer, C., Macagno, E. and Breymann, C. (2011) Efficacy and Safety of Oral Iron (III) Polymaltose Complex versus Ferrous Sulfate in Pregnant Women with Iron-Deficiency Anemia: A Multicenter, Randomized, Controlled Study. Journal of Maternal-Fetal and Neonatal Medicine, 24, 1347-1352.
[16] Geltman, P.L., Meyers, A.F., Mehta, S.D., Brugnara, C., Villon, I., Wu, Y.A. and Bauchner, H. (2004) Daily Multivitamins with Iron to Prevent Anemia in High-Risk Infants: A Randomized Clinical Trial. Pediatrics, 114, 86-93. http://dx.doi.org/10.1542/peds.114.1.86
[17] Walter, T., Dallman, P.R., Pizarro, F., et al. (1993) Effectiveness of Iron Fortified Infant Cereal in Prevention of Iron Deficiency Anemia. Pediatrics, 91, 976-982.                                         eww150225lx
Advertisements

A Continuous Electronic Nose Odor Monitoring System in the City of Agadir Morocco

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53237#.VLh23cnQrzE

ABSTRACT

The city of Agadir is one of the best tourist destinations in Morocco, considered as one of the most beautiful bay in the world, which has a port infrastructure and strong industry based on the processing of seafood which often implicated as the source of odors. In order to identify in real time the sources responsible for the odors experienced in the city center and to act quickly in conjunction with industry, the Wilaya of Souss Massa Draa Region has implemented a continuous odor monitoring and tracking system using electronic noses. The treatment of meteorological data and data sent by electronic nose enables atmospheric dispersion modeling, which allows to follow instantly the odor level in the study area and to identify the sources responsible for odors with receiving warning of incidents odors, data analysis system generated every four minutes allowed to have results confirmed by companions of questionnaires to nearby residents. To reduce odors, recommendations have been suggested, which is to set up affordable and efficient practices.

Cite this paper

Chirmata, A. , Ichou, I. and Page, T. (2015) A Continuous Electronic Nose Odor Monitoring System in the City of Agadir Morocco. Journal of Environmental Protection, 6, 54-63. doi: 10.4236/jep.2015.61007.

References

[1] Mao, F., Chen, M.-R., Wang, L., Chen, M.-L., Lai, S.-C. and Tsai, C.-J. (2012) Method Development for Determining the Malodor Source and Pollution in Industrial Park. Science of the Total Environment, 437, 270-275.
http://dx.doi.org/10.1016/j.scitotenv.2012.08.056
[2] Gyu Seo, S., Kun Ma, Z., Min Jeon, J., Chul Jung, S. and Bum Lee, W. (2011) Measurements of Key Offensive Odorants in a Fishery Industrial Complex in Korea. Atmospheric Environment, 45, 2929-2936.
http://dx.doi.org/10.1016/j.atmosenv.2011.01.032
[3] Odotech (2001) Caracterisation des emissions atmospheriques et evaluation de l’impact-odeur du lieu d’enfouissement sanitaire de la regie intermunicipale Argenteuil Deux Montagnes (Atmospheric emissions characterization and odor impact assessment of Argenteuil Deux Montagnes landfill area). Odotech Inc., Montreal.
[4] Nicolas, J., Cors, M., Romain, A.-C. and Delva, J. (2010) Identification of Odour Sources in an Industrial Park from Resident Diaries Statistics. Atmospheric Environment, 44, 1623-1631.
http://dx.doi.org/10.1016/j.atmosenv.2010.01.046
[5] Snidar, R., Culòs, B., Trovarelli, A., Soldati, A., Sironi, S. and Capelli, L. (2008) Evaluation of Odour Emissions from a Landfill through Dynamic Olfactometry, Dispersion Modelling and Electronic Noses. Chemical Engineering Transactions, 15, 315-322.
[6] EPA (2004) AERMOD: Description of Model Formulation. US Environmental Protection Agency, Research Triangle Park.
[7] Capelli, L., Sironi, S., Del Rosso, R., Centola, P. and Grande, M.I. (2008) A Comparative and Critical Evaluation of Odour Assessment Methods on a Landfill Site. Atmospheric Environment, 42, 7050-7058.
[8] Micone, P.G. and Guy, C. (2007) Odour Quantification by a Sensor Array: An Application to Landfill Gas Odours from Two Different Municipal Waste Treatment Works. Sensors and Actuators B, 120, 628-637.
http://dx.doi.org/10.1016/j.snb.2006.03.026
[9] Gorgy, T.G.A. (2003) Validation of an Air Dispersion Model for Odour Impact Assessment. McGill Unversity, Montreal.
[10] Guo, H., Jacobson, L.D., Schmidt, D.R. and Janni, K.A. (2001) Simulation of Odor Dispersion as Impacted by Weather Conditions. ASAE Publication Number 701P0201, St. Joseph.
[11] ASTM (2004) ASTM E679-04: Standard Practice for Determination of Odor and Taste Thresholds by a Forced-Choice Ascending Concentration Series Method of Limits. American Society for Testing and Materials, Philadelphia.
[12] EN 13725 (2003) Air Quality-Determination of Odour Concentration by Dynamic Olfactometry. Comite Europeen de Normalisation, Brussels, April 2003, 1-70.
http://www.cenorm.be
[13] Sironi, S., Capelli, L., Centola, P., Del Rosso, R. and Pierucci, S. (2010) Odour Impact Assessment by Means of Dynamic Olfactometry, Dispersion Modelling and Social Participation. Atmospheric Environment, 44, 354-360.
http://dx.doi.org/10.1016/j.atmosenv.2009.10.029
[14] Zhang, Q., Feddes, J.J.R., Edeogu, I.K. and Zhou, X.J. (2003) Correlation between Odor Intensity Assessed by Human Assessors and Odor Concentration Measured with Olfactometers. Canadian Biosystems Engineering, 44, 27-32.
[15] Capelli, L., Sironi, S., Del Rosso, R., Centola, P., Rossi, A. and Austeri, C. (2011) Odour Impact Assessment in Urban Areas: Case Study of the City of Terni. Procedia Environmental Sciences, 4, 151-157.
http://dx.doi.org/10.1016/j.proenv.2011.03.018
[16] Ratto, G., Videla, F., Maronna, R., Flores, A. and De Pablo, F. (2010) Air Pollutant Transport Analysis Based on Hourly Winds in the City of La Plata and Surroundings, Argentina. Water Air and Soil Pollution, 208, 243-257.
http://dx.doi.org/10.1007/s11270-009-0163-0
[17] Romain, A.C., Delva, J. and Nicolas, J. (2008) Complementary Approaches to Measure Environmental Odours Emitted by Landfill Areas. Sensors and Actuators B, 131, 18-23.
http://dx.doi.org/10.1016/j.snb.2007.12.005
[18] Solan, P.J., Dodd, V.A. and Curran, T.P. (2010) Evaluation of the Odour Reduction Potential of Alternative Cover Materials at a Commercial Landfill. Bioresource Technology, 101, 1115-1119.
http://dx.doi.org/10.1016/j.biortech.2009.09.030                                                                eww150116lx

Tai Chi in Parkinson’s Disease: A Preliminary Randomized, Controlled, and Rater-Blinded Study

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53143#.VLXZKMnQrzE

ABSTRACT

Background: Given the limited benefits of current treatments for Parkinson’s disease (PD), inter-ventions that might provide supplementary benefits would be of value. The traditional Chinese medicine practice of Tai Chi has been said to improve some aspects of PD, particularly imbalance. Methods: Preliminary randomized, controlled, and rater-blinded clinical trial of Tai Chi, focusing on its effects on global motor, daily function, mood and quality of life. Subjects continued their standard medical therapy and were randomly assigned to Tai Chi (16 weekly classes, expert trainer, practice at home between classes) or no Tai Chi (control group) in a 2:1 ratio. The primary outcome measure was the total motor score of the Unified Parkinson’s Disease Rating Scale (UPDRS) and this was scored by an experienced rater who was blinded to the treatment assignment. The same rater scored the Schwab and England Activities of Daily Living Scale. The patient-completed Geriatric Depression Scale, PD (quality of life) Questionnaire-39, and fall diary were also analyzed. Results: 44 subjects participated with 29 assigned to Tai Chi and 15 serving as controls. Tai Chi was well-tolerated. Seven subjects withdrew prior to completion (2 from Tai Chi, 5 from control). We found no significant difference between treatment groups in the change in scores from baseline to end of intervention for any of the scales. Trends toward a benefit of Tai Chi were observed for individual UPDRS items (depression, finger tapping, hand movements, posture). Conclusions: Tai Chi does not appear to improve global measures in patients with PD. The practice may have benefits for PD, but these appear to be largely restricted to specific motor tasks and perhaps mood rather than being a global functional response. More study is needed to clarify and establish efficacy.

Cite this paper

Kurlan, R. , Evans, R. , Wrigley, S. , McPartland, S. , Bustami, R. and Cotter, A. (2015) Tai Chi in Parkinson’s Disease: A Preliminary Randomized, Controlled, and Rater-Blinded Study. Advances in Parkinson’s Disease, 4, 9-12. doi: 10.4236/apd.2015.41002.

References

[1] Goodwin, V.A., Richards, S.H., Taylor, R.S., Taylor, A.H. and Campbell, J.L. (2008) The Effectiveness of Exercise Interventions for People with Parkinson’s Disease: A Systematic Review and Meta-Analysis. Movement Disorders, 23, 631-640. http://dx.doi.org/10.1002/mds.21922
[2] Wahbeh, H., Elsas, E.-M. and Oken, B.S. 2008 () Mind-Body Interventions: Applications in Neurology. Neurology, 70, 2321-2328. http://dx.doi.org/10.1212/01.wnl.0000314667.16386.5e
[3] Li, F., Harmer, P., McAuley, E., et al. (2001) Tai Chi, Self-Efficacy, and Physical Function in the Elderly. Prevention Science, 2, 229-239. http://dx.doi.org/10.1023/A:1013614200329
[4] Li, F., Harmer, P., Fisher, K.J., et al. (2007) Tai Chi-Based Exercise for Older Adults with Parkinson’s Disease: A Pilot-Program Evaluation. Journal of Aging and Physical Activity, 15, 139-151.
[5] Hackney, M.E. and Earhart, G.M. (2008) Tai Chi Improves Balance and Mobility in Patients with Parkinson’s Disease. Gait & Posture, 28, 456-460. http://dx.doi.org/10.1016/j.gaitpost.2008.02.005
[6] Li, F., Harmer, P., Fitzgerald, K., et al. (2012) Tai Chi and Postural Stability in Patients with Parkinson’s Disease. New England Journal of Medicine, 366, 511-519. http://dx.doi.org/10.1056/NEJMoa1107911
[7] Fahn, S. and Elton, R.L., Members of the UPDRS Development Committee (1987) Unified Parkinson’s Disease Rating Scale. In: Fahn, S., Marsden, C.D., Goldstein, M. and Calne, C.D., Eds., Recent Developments in Parkinson’s Disease, Volume II, Florham Park, 153-163.
[8] Schwab, R.S. and England, A.C. (1969) Projection Technique for Evaluating Surgery in Parkinson’s Disease. In: Gillingham, F.J. and Donaldson, I.M.L., Eds., Third Symposium on Parkinson’s Disease, Edingurgh, Livingstone, 152- 157.
[9] Sheikh, J.I. and Yesavage, J.A. (1986) Geriatric Depression Scale (GDS): Recent Evidence and Development of a Shorter Version. Journal of Mental Health and Aging, 5, 165-173.
[10] Peto, V., Jenkinson, C. and Fitzpatrick, R. (1998) PDQ-39: A Review of the Development, Validation and Application of a Parkinson’s Disease Quality of life Questionnaire and Its Associated Measures. Journal of Neurology, 245, S10- S14. http://dx.doi.org/10.1007/PL00007730
[11] Schrag, A., Sampaio, C., Counsell, N., et al. (2006) Minimal Clinically Important Change on the Unified Parkinson’s Disease Rating Scale. Movement Disorders, 21, 1200-1207. http://dx.doi.org/10.1002/mds.20914
[12] Lavretsky, H., Alstein, L.L., Olmstead, R.E., et al. (2011) Complementary Use of Tai Chi Augments Escitalopram Treatment of Geriatric Depression: A Randomized Controlled Trial. The American Journal of Geriatric Psychiatry, 19, 839-850. http://dx.doi.org/10.1097/JGP.0b013e31820ee9ef                                      eww150114lx

Osteoarthritis and Articular Cartilage: Biomechanics and Novel Treatment Paradigms

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=49383#.VI53x8nQrzE

Author(s)

ABSTRACT

Background: Osteoarthritis is a widespread highly painful disabling age-related disease with no known cure. Although novel strategies for ameliorating osteoarthritic damage abound, it is likely that none will be successful over time if the entire spectrum of the disease and the effects of joint biomechanics on joint tissues are not carefully considered. Objectives: 1) To detail the structure of healthy articular cartilage, the key tissue affected by osteoarthritis. 2) To detail what aspects of cartilage damage best characterize osteoarthritis. 3) To consider the role of biomechanical factors in developing solutions to treat osteoarthritic joint damage. Methods: Literature sources from 1980 onwards that have contributed to our knowledge of the topics relevant to this paper were accessed and retrieved. The data were categorized into four predominant themes and conclusions about the state of our knowledge and future directives were formulated. Conclusions: Osteoarthritis prevalence remains high, and a cure appears elusive. A rich body of data has helped us to better understand the key tissue involved, and suggests a repair process might be feasible, if the basic collective information on the role of biomechanics in mediating or moderating articular cartilage integrity and function is forthcoming.

Cite this paper

Marks, R. (2014) Osteoarthritis and Articular Cartilage: Biomechanics and Novel Treatment Paradigms. Advances in Aging Research, 3, 297-309. doi: 10.4236/aar.2014.34039.

References

[1] Martel-Pelletier, J., Wildi, L.M. and Pelletier, J-P. (2012) Future Therapeutics for Osteoarthritis. Bone, 51, 297-311.
http://dx.doi.org/10.1016/j.bone.2011.10.008
[2] Breedveld, F.C. (2004) Osteoarthritis—The Impact of a Serious Disease. Rheumatology, 43, i4-i8.
[3] Lajeunesse, D., Pelletier, J-P. and Martel-Pelletir, J. (2005) Osteoarthritis: A Metabolic Disease Induced by Local Abnormal Leptin Activity? Current Rheumatology Reports, 7, 79-81.
http://dx.doi.org/10.1007/s11926-005-0057-0
[4] Kuettner, K.E., Aydeotte, M. and Thonar, E.J.-M.A. (1991) Articular Cartilage Matrix and Structure: A Mini Review. Journal of Rheumatology, S27, 46-48.
[5] Goldring, M.B. and Otero, M. (2011) Inflammation in Osteoarthritis. Current Opinion in Rheumatology, 23, 471-478.
http://dx.doi.org/10.1097/BOR.0b013e328349c2b1
[6] Passiu, G. and Carcassi, U. (1989) Recent Trends in the Pathophysiology of Osteoarthritis. Rays, 14, 351-360.
[7] Hamerman, D. (1989) The Biology of Osteoarthritis. New England Journal of Medicine, 320, 1322-1330.
http://dx.doi.org/10.1056/NEJM198905183202006
[8] Poole, C.A. (1987) Articular Cartilage Chondrons: Form Function and Failure. Journal of Anatomy, 191, 1-13.
http://dx.doi.org/10.1046/j.1469-7580.1997.19110001.x
[9] Muir, H. (1995) The Chondrocyte, Architect of Cartilage. Biomechanics, Structure, Function and Molecular Biology of Cartilage Matrix Macromolecules. Bioessays, 17, 1039-1048.
http://dx.doi.org/10.1002/bies.950171208
[10] Gardner, D.L. (1994) Problems and Paradigms in Joint Pathology. Journalof Anatomy, 184, 465-476.
[11] Kuettner, K.E. (1992) Biochemistry of Articular Cartilage in Health and Disease. Clinical Biochemistry, 25, 155-163.
http://dx.doi.org/10.1016/0009-9120(92)90224-G
[12] Ishida, O., Tanaka, Y., Morimoto, I., Takigawa, M. and Eto, S. (1997) Chondrocytes are Regulated by Cellular Adhesion through CD44 and Hyaluronic Acid Pathways. Journal of Bone and Mineral Research, 12, 1657-1663.
http://dx.doi.org/10.1359/jbmr.1997.12.10.1657
[13] Goldring, M.B. (2012) Articular Cartilage Degradation. Hospital for Special Surgery Journal, 9, 7-9.
[14] Poole, C.A., Flint, M.H. and Beaumont, B.W. (1987) Chondrons in Cartilage: Ultrastructural Analysis of the Pericellular Microenvironment in Adult Human Articular Cartilages. Journal of Orthopedic Research, 5, 509-522.
http://dx.doi.org/10.1002/jor.1100050406
[15] Salter, D.M., Godolphin, J.L. and Gourlay, M.S. (1995) Chondrocyte Heterogeneity: Immunohistoloically Defined Variation of Integrin Expression at Different Sites in Human Fetal Knees. Journal of Histochemistry and Cytochemistry, 43, 447-457.
[16] Guilak, F. (2011) Biomechanical Factors in Osteoarthritis. Best Practices in Research and Clinical Rheumatology, 25, 815-823.
http://dx.doi.org/10.1016/j.berh.2011.11.013
[17] Knudson, C.B. (1993) Hyaluronan Receptor Directed Assembly of Chondrocyte Pericellular Matrix. Journal of Biological Chemistry, 120, 825-834.
[18] Lapadula, G., Iannone, F., Zuccaro, C., Grattagliano, V., Covelli, M., Patella, V., et al. (1997) Integrin Expression on Chondrocytes: Correlations with the Degree of Cartilage Damage in Human Osteoarthritis. Clinical and Experimental Rheumatology, 15, 247-254.
[19] Stockwell, R.A. (1974) Cellular Aspects: The Chondrocyte Population and the Chondrocyte. In: Ali, S.Y., Elves, M.W. and Leaback, D.H., Eds., Normal and Osteoarthritic Articular Cartilage, Institute of Orthopaedics, London, 461-486.
[20] Sironen, R.K., Karjalainen, H.M., Elo, M.A., Kaarniranta, K., Törrönen, K., Takigawa, M., et al. (2002) cDNA Array Reveals Mechanosensitive Genes in Chondrocytic Cells under Hydrostatic Pressure. Biochimica et Biophysica Acta (BBA)—Molecular Cell Research, 1591, 45-54.
http://dx.doi.org/10.1016/S0167-4889(02)00247-1
[21] Buckwalter, J.A. and Mankin, H.J. (1998) Articular Cartilage: Tissue Design and Chondrocyte-Matrix Interactions. AAOS Instructional Course Lectures, 47, 477-486.
[22] Muir, I.H.M. (1980) The Chemistry of the Ground Substance of Joint Cartilage. In: Sokoloff, L. Ed., The Joints and Synovial Fluid, Academic Press, New York, 27-94.
http://dx.doi.org/10.1016/B978-0-12-655102-0.50008-4
[23] Unsworth, A. (1984) Some Biomechanical Factors in Osteoarthritis. Journal of Rheumatology, 23, 173-176.
http://dx.doi.org/10.1093/rheumatology/23.3.173
[24] Choi, W. (1996) Alterations in Articular Cartilage of the Rabbit Mandibular Condyle Following Surgical Induction of Anterior Disc Displacement: Light and Electron Microscopic Immunocytochemistry Using Colloidal Gold Conjugates. Ph.D. Thesis, Medical College of Georgia, Augusta.
[25] Eyre, D.R. (1991) The Collagens of Articular Cartilage. Seminars in Arthritis and Rheumatism, 3, 2-11.
http://dx.doi.org/10.1016/0049-0172(91)90035-X
[26] Schwartz, M.H., Leo, P.H. and Lewis, J.L. (1994) A Microstructural Model for the Elastic Response of Articular Cartilage. Journal of Biomechanics, 27, 865-873.
http://dx.doi.org/10.1016/0021-9290(94)90259-3
[27] Yutani, Y. and Yamano, Y. (1996) The Distribution of Differentiated Phenotypes of Chondrocytes in Osteoarthritic Cartilage. Osaka City Medical Journal, 42, 37-44.
[28] Aigner, T., Reichenberger, E., Bertling, W., Kirsh, T., Stob, H. and von der Mark, K. (1993) Type X Collagen Expression in Osteoarthritic and Rheumatoid Articular Cartilage. Virchows Archives B Cell Pathology, 63, 205-211.
[29] Stockwell, R.A. (1991) Cartilage Failure in Osteoarthritis: Relevance of Normal Structure and Function. A Review. Clinical Anatomy, 4, 161-191.
http://dx.doi.org/10.1002/ca.980040303
[30] Chevalier, X. (1993) Fibronectin, Cartilage and Osteoarthritis. Seminars in Arthritis and Rheumatism, 22, 307-318.
http://dx.doi.org/10.1016/S0049-0172(05)80010-1
[31] Wuster, N.B. and Lust, G. (1982) Synthesis of Fibronectin in Normal and Osteoarthritic Articular Cartilage. Biochemical and Biophysical Research Communications, 109, 1094-1101.
http://dx.doi.org/10.1016/0006-291X(82)91889-7
[32] Paulsson, M. (1994) Non-Collagenous Matrix Proteins in Cartilage: Physiological Function and Diagnostic Usefulness in Joint Disease. Zeitschrift für Rheumatologie, 53, 1-96.
[33] Hardingham, T.E., Venn, G. and Bayliss, M.T. (1991) Chondrocyte Responses in Cartilage and in Experimental Osteoarthritis. British Journal of Rheumatology, 30, 32-37.
[34] Carney, S.L., Billingham, M.E.J., Caterson, B., Ratcliffe, A., Bayliss, M.T., Hardingham, T.E., et al. (1992) Changes in Proteoglycan Turnover in Experimental Canine Osteoarthritic Cartilage. Matrix, 12, 137-147.
http://dx.doi.org/10.1016/S0934-8832(11)80055-7
[35] Dunham, J., Chambers, M.G., Jasani, M.K., Bitensky, L. and Chayen, J. (1990) Changes in the Orientation of Proteoglycans during the Early Development of Natural Murine Osteoarthritis. Journal of Orthopaedic Research, 8, 101-104.
http://dx.doi.org/10.1002/jor.1100080113
[36] Souza, R.B., Kumar, D., Calixto, N., Singh, J., Schooler, J., Subburaj, K., et al. (2014) Response of Knee Cartilage T1rho and T2 Relaxation Times to in Vivo Mechanical Loading in Individuals with and without Knee Osteoarthritis. Osteoarthritis and Cartilage.
http://dx.doi.org/10.1016/j.joca.2014.04.017
[37] Mankin, H.J. and Brandt, K.D. (1989) Pathogenesis of Osteoarthritis. In: Kelley, W.N., Harris, E.D., Ruddy, S. and Sledge, C.B., Eds., Textbook of Rheumatology, 3rd Edition, WB Saunders Company, Philadelphia, 1469-1479.
[38] Chrisman, O.D., Ladenbauer-Bellis, I.M., Panjabi, M. and Goeltz, S. (1981) The Relationship of Mechanical Trauma and the Early Biochemical Reactions of Osteoarthritic Cartilage. Clinical Orthopaedics and Related Research, 161, 275-284.
[39] Kuettner, K.E. and Pauli, P.V. (1983) Vascularity of Cartilage. In: Hall, B.K., Ed., Cartilage, Vol. 1, Academic Press, New York, 281-312.
http://dx.doi.org/10.1016/B978-0-12-319501-2.50016-9
[40] Borghetti, P., Salda, L.D., De Angleis, E., Maltarello, M.C., Petronini, P.G., Cabassi, E., et al. (1995) Adaptive Cellular Response to Osmotic Stress in Pig Articular Chondrocytes. Tissue and Cell, 27, 173-183.
http://dx.doi.org/10.1016/S0040-8166(95)80020-4
[41] Brocklehurst, R., Bayliss, M.T., Maroudas, A., Coysh, H.L., Freeman, M.A.R., Revell, P.A., et al. (1984) The Composition of Normal and Osteoarthritic Articular Cartilage from Human Knee Joints. With Special Reference to Unicompartmental Replacement and Osteotomy of the Knee. Journal of Bone and Joint Surgery, 66, 95-106.
[42] Wei, F., Moore, D.C., Li, Y., Zhang, G., Wei, X., Lee, J.K. and Wei, L. (2012) Attenuation of Osteoarthritis via Blockade of the SDF-1/CXCR4 Signaling Pathway. Arthritis Research and Therapy, 14, R177.
http://dx.doi.org/10.1186/ar3930
[43] Silacci, P., Dayer, J.M., Desgeorges, A., Peter, R., Manueddu, C. and Guerne, P.A. (1998) Interleukin (IL)-6 and Its Soluble Receptor Induce TIMP-1 Expression in Synoviocytes and Chondrocytes and Block IL-1-Induced Collagenolytic Activity. Journal of Biological Chemistry, 273, 13625-13629. http://dx.doi.org/10.1074/jbc.273.22.13625
[44] Roughly, P.J., Nguyen, Q. and Mort, J.S. (1991) Mechanisms of Proteoglycan Degradation in Human Articular Cartilage. Journal of Rheumatology, 18, 52-54.
[45] Sokoloff, L. (1987) Osteoarthritis as a Remodeling Process. Journal of Rheumatology, 14, 7-10.
[46] Benya, P.D. and Shaffer, J.D. (1982) Dedifferentiated Chondrocytes Reexpress the Differentiated Collagen Phenotype when Cultured in Agarose Gels. Cell, 30, 215-224.
http://dx.doi.org/10.1016/0092-8674(82)90027-7
[47] Mobasheri, A., Kalamegam, G., Musumeci, G. and Batt, M.E. (2014) Chondrocyte and Mesenchymal Stem Cell-Based Therapies for Cartilage Repair in Osteoarthritis and Related Orthopaedic Conditions. Maturitas, 78, 188-198.
http://dx.doi.org/10.1016/j.maturitas.2014.04.017
[48] Pettersen, I., Figenschau, Y., Olsen, E., Bakkelund, W., Smedsröd, B. and Sveinbjörnsson, B. (2002) Tumor Necrosis Factor-Related Apoptosis-Inducing Ligand Induces Apoptosis in Human Articular Chondrocytes in Vitro. Biochemistry and Biophysics Research Communications, 29, 671-676.
http://dx.doi.org/10.1016/S0006-291X(02)00916-6
[49] Gelse, K., Aigner, T., Stöve, J. and Schneider, H. (2005) Gene Therapy Approaches for Cartilage Injury and Osteoarthritis. Current Medicinal Chemistry Anti-Inflammatory and Anti-Allergy Agents, 4, 265-279.
http://dx.doi.org/10.2174/1568014054065203
[50] Wang, Q., Yang, Y.-Y., Niu, H.-J., Zhang, W.-J., Feng, Q.-J. and Chen, W.-F. (2013) An Ultrasound Study of Altered Hydration Behaviour of Proteoglycan-Degraded Articular Cartilage. BMC Musculoskeletal Disorders, 14, 1-18.
[51] Gao, Y., Liu, S., Huang, J., Guo, W., Chen, J., Zhang, L., et al. (2014) The ECM-Cell Interaction of Cartilage Extracellular Matrix on Chondrocytes. Biomedical Research International, 2014, Artical ID: 648459.
[52] Aigner, T., Sachse, A., Gebhard, P. and Roach, H. (2006) Osteoarthritis: Pathobiology—Targets and Ways for Therapeutic Intervention. Advanced Drug Delivery Reviews, 58, 128-149.
http://dx.doi.org/10.1016/j.addr.2006.01.020
[53] Chang, C., Kuo, T., Wang, W., Wang, J.H., Hsu, Y.M., Huang, H.T., et al. (2011) Tissue Engineering-Based Cartilage Repair with Mesenchymal Stem Cells in a Porcine Model. Journal of Orthopaedic Research, 29, 1874-1880
[54] Wan, R., Hu, J., Zhou, Q., Wang, J., Liu, P. and Wei, Y. (2012) Application of Co-Expressed Genesto Articular Cartilage: New Hope for the Treatment of Osteoarthritis. Molecular Medicine Report, 6, 16-18.
http://dx.doi.org/10.3892/mmr.2012.859
[55] Bhosale, A.M. and Richardson, J.B. (2008) Articular Cartilage: Structure, Injuries and Review of Management. British Medical Bulletin, 87, 77-95.
http://dx.doi.org/10.1093/bmb/ldn025
[56] Wei, F., Zhou, J., Wei, X., Zhang, J., Fleming, B.C., Terek, R., et al. (2012) Activation of Indian Hedgehog Promotes Chondrocyte Hypertrophy and Upregulation of MMP-13 in Human Osteoarthritic Cartilage. Osteoarthritis and Cartilage, 20, 755-763.
http://dx.doi.org/10.1016/j.joca.2012.03.010
[57] Issa, R.I. and Griffin, T.M. (2012) Pathobiology of Obesity and Osteoarthritis: Integrating Biomechanics and Inflammation. Pathobiology of Aging and Age Related Diseases, 2, 17470.
[58] Minas, T. and Nehrer, S. (1997) Current Concepts in the Treatment of Articular Cartilage Defects. Orthopedics, 20, 525-538.
[59] Aigner, T., Söder, S., Gebhard, P.M., McAlinden, A. and Haag, J. (2007) Mechanisms of Disease: Role of Chondrocytes in the Pathogenesis of Osteoarthritis—Structure, Chaos and Senescence. Nature Clinical Practice Rheumatology, 3, 391-399.
http://dx.doi.org/10.1038/ncprheum0534
[60] Brady, M.A., Waldman, S.D. and Ethier, C.R. (2014) The Application of Multiple Biophysical Cues to Engineer Functional Neocartilage for Treatment of Osteoarthritis (Part I: Cellular Response). Tissue Engineering Part B Review.                                                                                                                                 eww141215lx

Borrelia burgdorferi: Cell Biology and Clinical Manifestations in Latent Chronic Lyme

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51411#.VGlNBmfHRK0

Affiliation(s)

ABSTRACT

Chronic Lyme disease is predicated by an infection with Borrelia burgdorferi via tick vector. B. burgdorferi has been extensively researched with regard to its genome and cell biology. There are many unique characteristics to the bacteria itself; however, serological diagnostics and diagnosis based on symptoms can be complicated and potentially misleading. Other promising diagnostics were also evaluated in this review. Treatment of the chronic Lyme disease can be complicated and at times ineffective. The purpose of this review is to examine B. burgdorferi from a biological and clinical perspective.

Cite this paper

Smith, A. , Oertle, J. and Prato, D. (2014) Borrelia burgdorferi: Cell Biology and Clinical Manifestations in Latent Chronic Lyme. Open Journal of Medical Microbiology, 4, 210-223. doi: 10.4236/ojmm.2014.44023.

References

[1] Garin, C. and Bujadoux, A. (1922) Paralysie par les tiques. J Med Lyon, 71, 765-767.
[2] Steere, A.C., Malawista, S.E., Hardin, J.A., Ruddy, S., Askenase, W. and Andiman, W.A. (1977) Erythema Chronicum Migrans and Lyme Arthritis. The Enlarging Clinical Spectrum. Annals of Internal Medicine, 86, 685-698.
http://dx.doi.org/10.7326/0003-4819-86-6-685
[3] Qiu, W. and Martin, C. (2014) Evolutionary Genomics of Borrelia burgdorferi Sensu Lato: Findings, Hypotheses, and the Rise of Hybrids. Infection, Genetics and Evolution, 27, 576-593.
http://dx.doi.org/10.1016/j.meegid.2014.03.025
[4] Casjens, S., Palmer, N., van Vugt, R., Huang, W.M., Stevenson, B., et al. (2000) A Bacterial Genome in Flux: The Twelve Linear and Nine Circular Extrachromosomal DNAs in an Infectious Isolate of the Lyme Disease Spirochete Borrelia burgdorferi. Molecular Microbiology, 35, 490-516.
http://dx.doi.org/10.1046/j.1365-2958.2000.01698.x
[5] Casjens, S.R., Mongodin, E.F., Qiu, W.-G., Luft, B.J., Schutzer, S.E., et al. (2012) Genome Stability of Lyme Disease Spirochetes: Comparative Genomics of Borrelia burgdorferi Plasmids. PLoS ONE, 7.
http://dx.doi.org/10.1371/journal.pone.0033280
[6] Chaconas, G. and Kobryn, K. (2010) Structure, Function, and Evolution of Linear Replicons in Borrelia. Annual Review of Microbiology, 64, 185-202.
http://dx.doi.org/10.1146/annurev.micro.112408.134037
[7] Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., et al. (1997) Genomic Sequence of a Lyme Disease Spirochete, Borrelia burgdorferi. Nature, 390, 580-586.
http://dx.doi.org/10.1038/37551
[8] Barbour, A.G. and Garon, C.F. (1987) Linear Plasmids of the Bacterium Borrelia burgdorferi Have Covalently Closed Ends. Science, 237, 409-411.
http://dx.doi.org/10.1126/science.3603026
[9] Kobryn, K. and Chaconas, G. (2002) ResT, a Telomere Resolvase Encoded by the Lyme Disease Spirochete. Molecular Cells, 9, 195-201.
http://dx.doi.org/10.1016/S1097-2765(01)00433-6
[10] Radolf, J.D., Caimano, M.J., Stevenson, B. and Hu, L.T. (2012) Of Ticks, Mice and Men: Understanding the Dualhost Lifestyle of Lyme Disease Spirochaetes. Nature Reviews Microbiology, 10, 87-99.
[11] Samuels, D.S. (2011) Gene Regulation in Borrelia burgdorferi. Annual Review of Microbiology, 65, 479-499.
http://dx.doi.org/10.1146/annurev.micro.112408.134040
[12] Singh, S.K. and Girschick, H.J. (2004) Molecular Survival Strategies of the Lyme Disease Spirochete Borrelia burgdorferi. The Lancet Infectious Diseases, 4, 575-583.
http://dx.doi.org/10.1016/S1473-3099(04)01132-6
[13] Gherardini, F., Boylan, J., Lawrence, K. and Skare, J. (2010) Metabolism and Physiology of Borrelia. Borrelia: Molecular Biology, Host Interaction and Pathogenesis. Caister Academic Press, Norfolk, 103-138.
[14] Saier Jr., M.H. and Paulsen, I.T. (2000) Whole Genome Analyses of Transporters in Spirochetes: Borrelia burgdorferi and Treponema pallidum. Journal of Molecular Microbiology and Biotechnology, 2, 393-399.
[15] Zhang, J.-R., Hardham, J.M., Barbour, A.G. and Norris, S.J. (1997) Antigenic Variation in Lyme Disease Borreliae by Promiscuous Recombination of VMP-Like Sequence Cassettes. Cell, 89, 275-285.
http://dx.doi.org/10.1016/S0092-8674(00)80206-8
[16] Zhang, J.-R. and Norris, S.J. (1998) Genetic Variation of the Borrelia burgdorferi Gene vlsE Involves Cassette-Specific, Segmental Gene Conversion. Infection and Immunity, 66, 3698-3704.
[17] Barbour, A.G. (1984) Isolation and Cultivation of Lyme Disease Spirochetes. Yale Journal of Biology and Medicine, 57, 521-525.
[18] Corbin, B.D., Seeley, E.H., Raab, A., Feldmann, J., Miller, M.R., Torres, V.J., et al. (2008) Metal Chelation and Inhibition of Bacterial Growth in Tissue Abscesses. Science, 319, 962-965.
http://dx.doi.org/10.1126/science.1152449
[19] Papp-Wallace, K.M. and Maguire, M.E. (2006) Manganese Transport and the Role of Manganese in Virulence. Annual Review of Microbiology, 60, 187-209.
http://dx.doi.org/10.1146/annurev.micro.60.080805.142149
[20] Wandersman, C. and Delepelaire, P. (2004) Bacterial Iron Sources: From Siderophores to Hemophores. Annual Review of Microbiology, 58, 611-647.
http://dx.doi.org/10.1146/annurev.micro.58.030603.123811
[21] Overbeek, R., Larsen, N., Walunas, T., D’Souza, M., Pusch, G., Selkov Jr., E., et al. (2003) The ERGO Genome Analysis and Discovery System. Nucleic Acids Research, 31, 164-171.
http://dx.doi.org/10.1093/nar/gkg148
[22] Wang, X.G., Lin, B., Kidder, J.M., Telford, S. and Hu, L.T. (2002) Effects of Environmental Changes on Expression of the Oligopeptide Permease (opp) Genes of Borrelia burgdorferi. Journal of Bacteriology, 184, 6198-6206.
http://dx.doi.org/10.1128/JB.184.22.6198-6206.2002
[23] von Lackum, K. and Stevenson, B. (2005) Carbohydrate Utilization by the Lyme borreliosis Spirochete, Borrelia burgdorferi. FEMS Microbiology Letters, 243, 173-179.
http://dx.doi.org/10.1016/j.femsle.2004.12.002
[24] Tilly, K., Elias, A.F., Errett, J., Fischer, E., Iyer, R., Schwartz, I., et al. (2001) Genetics and Regulation of Chitobiose Utilization in Borrelia burgdorferi. Journal of Bacteriology, 183, 5544-5553.
http://dx.doi.org/10.1128/JB.183.19.5544-5553.2001
[25] He, M., Ouyang, Z., Troxell, B., Xu, H., Moh, A., Piesman, J., et al. (2011) Cyclic di-GMP Is Essential for the Survival of the Lyme Disease Spirochete in Ticks. PLoS Pathogens, 7, e1002133.
http://dx.doi.org/10.1371/journal.ppat.1002133
[26] Pappas, C.J., Iyer, R., Petzke, M.M., Caimano, M.J., Radolf, J.D. and Schwartz, I. (2011) Borrelia burgdorferi Requires Glycerol for Maximum Fitness during the Tick Phase of the Enzootic Cycle. PLoS Pathogens, 7, e1002102.
http://dx.doi.org/10.1371/journal.ppat.1002102
[27] Barbour, A.G. and Hayes, S.F. (1986) Biology of Borrelia Species. Microbiological Reviews, 50, 381-400.
[28] Boylan, J.A., Lawrence, K.A., Downey, J.S. and Gherardini, F.C. (2008) Borrelia burgdorferi Membranes Are the Pri- mary Targets of Reactive Oxygen Species. Molecular Microbiology, 68, 786-799.
http://dx.doi.org/10.1111/j.1365-2958.2008.06204.x
[29] Ostberg, Y., Berg, S., Comstedt, P., Wieslander, A. and Bergstrom, S. (2007) Functional Analysis of a Lipid Galactosyltransferase Synthesizing the Major Envelope Lipid in the Lyme Disease Spirochete Borrelia burgdorferi. FEMS Microbiology Letters, 272, 22-29.
http://dx.doi.org/10.1111/j.1574-6968.2007.00728.x
[30] Wang, X.G., Scagliotti, J.P. and Hu, L.T. (2004) Phospholipid Synthesis in Borrelia burgdorferi: BB0249 and BB0721 Encode Functional Phosphatidylcholine Synthase and Phosphatidylglycerolphosphate Synthase Proteins. Microbiology, 150, 391-397.
http://dx.doi.org/10.1099/mic.0.26752-0
[31] Sambir, M., Ivanova, L.B., Bryksin, A.V., Godfrey, H.P. and Cabello, F.C. (2011) Functional Analysis of Borrelia burgdorferi uvrA in DNA Damage Protection. FEMS Microbiology Letters, 317, 172-180.
http://dx.doi.org/10.1111/j.1574-6968.2011.02226.x
[32] Hardy, P.O. and Chaconas, G. (2013) The Nucleotide Excision Repair System of Borrelia burgdorferi Is the Sole Pathway Involved in Repair of DNA Damage by UV Light. Journal of Bacteriology, 195, 2220-2231.
http://dx.doi.org/10.1128/JB.00043-13
[33] Johnson, L. and Stricker, R. (2010) The Infectious Diseases Society of America Lyme Guidelines: A Cautionary Tale about the Development of Clinical Practice Guidelines. Philosophy, Ethics, and Humanities in Medicine, 5, 9.
http://dx.doi.org/10.1186/1747-5341-5-9
[34] Sal, M.S., Li, C., Motalab, M.A., Shibata, S., Aizawa, S. and Charon, N.W. (2008) Borrelia burgdorferi Uniquely Regulates Its Motility Genes and Has an Intricate Flagellar Hook-Basal Body Structure. Journal of Bacteriology, 190, 1912-1921.
http://dx.doi.org/10.1128/JB.01421-07
[35] Charon, N.W., Goldstein, S.F., Marko, M., et al. (2009) The Flat Ribbon Configuration of the Periplasmic Flagella of Borrelia burgdorferi and Its Relationship to Motility and Morphology. Journal of Bacteriology, 191, 600-607.
http://dx.doi.org/10.1128/JB.01288-08
[36] Berende, A., Oosting, M., Kullberg, B.J., Netea, M.G. and Joosten, L.A. (2010) Activation of Innate Host Defense Mechanisms by Borrelia. European Cytokine Network, 21, 7-18.
[37] Weis, J.J. and Bockenstedt, L.K. (2010) Host Response. In: Samuels, D.S. and Radolf, J., Eds., Borrelia—Molecular biology, Host Interaction and Pathogenesis, Caister Academic Press, Norfolk, 413-441.
[38] Posey, J.E. and Gherardini, F.C. (2000) Lack of a Role for Iron in the Lyme Disease Pathogen. Science, 288, 1651- 1653.
http://dx.doi.org/10.1126/science.288.5471.1651
[39] Iuchi, S. and Weiner, L. (1996) Cellular and Molecular Physiology of Escherichia coli in the Adaptation to Aerobic Environments. Journal of Biochemistry, 120, 1055-1063.
http://dx.doi.org/10.1093/oxfordjournals.jbchem.a021519
[40] Boylan, J.A., Hummel, C.S., Benoit, S., Garcia-Lara, J., Treglown-Downey, J., Crane, E.J., et al. (2006) Borrelia burgdorferi bb0728 Encodes a Coenzyme A Disulphide Reductase Whose Function Suggests a Role in Intracellular Redox and the Oxidative Stress Response. Molecular Microbiology, 59, 475-486.
http://dx.doi.org/10.1111/j.1365-2958.2005.04963.x
[41] Boylan, J.A., Posey, J.E. and Gherardini, F.C. (2003) Borrelia Oxidative Stress Response Regulator, BosR: A Distinctive Zn-Dependent Transcriptional Activator. Proceedings of the National Academy of Sciences of the United States of America, 100, 11684-91168.
http://dx.doi.org/10.1073/pnas.2032956100
[42] Hyde, J.A., Seshu, J. and Skare, J.T. (2006) Transcriptional Profiling of Borrelia burgdorferi Containing a Unique bosR Allele Identifies a Putative Oxidative Stress Regulon. Microbiology, 152, 2599-2609.
http://dx.doi.org/10.1099/mic.0.28996-0
[43] Ouyang, Z., Deka, R.K. and Norgard, M.V. (2011) BosR (BB0647) Controls the RpoN-RpoS Regulatory Pathway and Virulence Expression in Borrelia burgdorferi by a Novel DNA-Binding Mechanism. PLoS Pathogens, 7, e1001272.
http://dx.doi.org/10.1371/journal.ppat.1001272
[44] Seshu, J., Boylan, J.A., Hyde, J.A., Swingle, K.L., Gherardini, F.C. and Skare, J.T. (2004) A Conservative Amino Acid Change Alters the Function of BosR, the Redox Regulator of Borrelia burgdorferi. Molecular Microbiology, 54, 1352- 1363.
http://dx.doi.org/10.1111/j.1365-2958.2004.04352.x
[45] Zhao, G., Ceci, P., Ilari, A., Giangiacomo, L., Laue, T.M., Chiancone, E., et al. (2002) Iron and Hydrogen Peroxide Detoxification Properties of DNA-Binding Protein from Starved Cells. A Ferritin-Like DNA-Binding Protein of Esche- richia coli. The Journal of Biological Chemistry, 277, 27689-27696.
http://dx.doi.org/10.1074/jbc.M202094200
[46] Aguirre, J.D., Clark, H.M., McIlvin, M., Vazquez, C., Palmere, S.L., Grab, D.J., et al. (2013) A Manganese-Rich Environment Supports Superoxide Dismutase Activity in a Lyme Disease Pathogen, Borrelia burgdorferi. The Journal of Biological Chemistry, 288, 8468-8478.
http://dx.doi.org/10.1074/jbc.M112.433540
[47] Esteve-Gassent, M.D., Elliott, N.L. and Seshu, J. (2009) sodA Is Essential for Virulence of Borrelia burgdorferi in the Murine Model of Lyme Disease. Molecular Microbiology, 71, 594-612.
http://dx.doi.org/10.1111/j.1365-2958.2008.06549.x
[48] Troxell, B., Xu, H. and Yang, X.F. (2012) Borrelia burgdorferi, Pathogen That Lacks Iron, Encodes Manganese-Dependent Superoxide Dismutase Essential for Resistance to Streptonigrin. The Journal of Biological Chemistry, 287, 19284-19293.
http://dx.doi.org/10.1074/jbc.M112.344903
[49] Whitehouse, C.A., Williams, L.R. and Austin, F.E. (1997) Identification of Superoxide Dismutase Activity in Borrelia burgdorferi. Infection and Immunity, 65, 4865-4868.
[50] Barbour, A.G. (1990) Antigenic Variation of a Relapsing Fever Borrelia Species. Annual Review of Microbiology, 44, 155-171.
http://dx.doi.org/10.1146/annurev.mi.44.100190.001103
[51] Barbour, A.G. and Restrepo, B.I. (2000) Antigenic Variation in Vector-Borne Pathogens. Emerging Infectious Diseases, 6, 449-457.
http://dx.doi.org/10.3201/eid0605.000502
[52] Deitsch, K.W., Moxon, E.R. and Wellems, T.E. (1997) Shared Themes of Antigenic Variation and Virulence in Bacterial, Protozoal, and Fungal Infections. Microbiology and Molecular Biology Reviews, 61, 281-293.
[53] Palmer, G.H. and Brayton, K.A. (2007) Gene Conversion Is a Convergent Strategy for Pathogen Antigenic Variation. Trends in Parasitology, 23, 408-413.
http://dx.doi.org/10.1016/j.pt.2007.07.008
[54] Vink, C., Rudenko, G. and Seifert, H.S. (2011) Microbial Antigenic Variation Mediated by Homologous DNA Recombination. FEMS Microbiology Reviews, 5, 917-948.
[55] Eicken, C., Sharma, V., Klabunde, T., Lawrenz, M.B., Hardham, J.M., Norris, S.J., et al. (2002) Crystal Structure of Lyme Disease Variable Surface Antigen VlsE of Borrelia burgdorferi. The Journal of Biological Chemistry, 277, 21691-2166.
http://dx.doi.org/10.1074/jbc.M201547200
[56] Liang, F.T., Alvarez, A.L., Gu, Y., Nowling, J.M., Ramamoorthy, R. and Philipp, M.T. (1999) An Immunodominant Conserved Region within the Variable Domain of VlsE, the Variable Surface Antigen of Borrelia burgdorferi. The Journal of Immunology, 163, 5566-5573.
[57] Liang, F.T., Nowling, J.M. and Philipp, M.T. (2000) Cryptic and Exposed Invariable Regions of VlsE, the Variable Surface Antigen of Borrelia burgdorferi sl. Journal of Bacteriology, 182, 3597-3601.
http://dx.doi.org/10.1128/JB.182.12.3597-3601.2000
[58] Kraiczy, P., Peters, S., Seitz, C., Wurzner, R., Oschmann, P. and Brade, V. (1998) Growth Inhibitory and Bactericidal Efficacy of Sera from Lyme borreliosis Patients on Borrelia burgdorferi Strains. Wiener Klinische Wochenschrift, 110, 886-893.
[59] Kraiczy, P., Skerka, C., Kirschfink, M., Brade, V. and Zipfel, P.F. (2001) Immune Evasion of Borrelia burgdorferi by Acquisition of Human Complement Regulators FHL-1/Reconectin and Factor H. European Journal of Immunology, 31, 1674-1684.
http://dx.doi.org/10.1002/1521-4141(200106)31:6<1674::AID-IMMU1674>3.0.CO;2-2
[60] Gordon, D.L., Kaufman, R.M., Blackmore, T.K., Kwong, J. and Lublin, D.M. (1995) Identification of Complement Regulatory Domains in Human Factor H. The Journal of Immunology, 155, 348-356.
[61] Kraiczy, P., Skerka, C., Brade, V. and Zipfel, P.F. (2001) Further Characterization of Complement Regulator-Acquir- ing Surface Proteins of Borrelia burgdorferi. Infection and Immunity, 69, 7800-7809.
http://dx.doi.org/10.1128/IAI.69.12.7800-7809.2001
[62] Kuhn, S., Skerka, C. and Zipfel, P.F. (1995) Mapping of the Complement Regulatory Domains in the Human Factor H-Like Protein 1 and in Factor H1. The Journal of Immunology, 155, 5663-5670.
[63] Kuhn, S. and Zipfel, P.F. (1996) Mapping of the Domains Required for Decay Acceleration Activity of the Human Factor H-Like Protein 1 and Factor H. European Journal of Immunology, 26, 2383-2387.
http://dx.doi.org/10.1002/eji.1830261017
[64] Lindahl, G., Sjobring, U. and Johnsson, E. (2000) Human Complement Regulators: A Major Target for Pathogenic Microorganisms. Current Opinion in Immunology, 12, 44-51.
http://dx.doi.org/10.1016/S0952-7915(99)00049-7
[65] Kurtenbach, K., De Michelis, S., Etti, S., Schafer, S.M., Sewell, H.S., Brade, V., et al. (2002) Host Association of Borrelia burgdorferi Sensu Lato—The Key Role of Host Complement. Trends in Microbiology, 10, 74-79.
http://dx.doi.org/10.1016/S0966-842X(01)02298-3
[66] Stevenson, B., El-Hage, N., Hines, M.A., Miller, J.C. and Babb, K. (2002) Differential Binding of Host Complement Inhibitor Factor H by Borrelia burgdorferi Erp Surface Proteins: A Possible Mechanism Underlying the Expansive Host Range of Lyme Disease Spirochetes. Infection and Immunity, 70, 491-497.
http://dx.doi.org/10.1128/IAI.70.2.491-497.2002
[67] Xu, H., Raddi, G., Liu, J., Charon, N.W. and Li, C. (2011) Chemoreceptors and Flagellar Motors Are Subterminally Located in Close Proximity at the Two Cell Poles in Spirochetes. Journal of Bacteriology, 193, 2652-2656.
http://dx.doi.org/10.1128/JB.01530-10
[68] Zhang, K., Liu, J., Tu, Y., Xu, H., Charon, N.W. and Li, C. (2012) Two CheW Coupling Proteins Are Essential in a Chemosensory Pathway of Borrelia burgdorferi. Molecular Microbiology, 85, 782-794.
http://dx.doi.org/10.1111/j.1365-2958.2012.08139.x
[69] Parveen, N. and Leong, J.M. (1998) Identification of a Candidate Glycosaminoglycan-Binding Adhesin of the Lyme Disease Spirochete Borrelia burgdorferi. Molecular Microbiology, 35, 1220-1234.
http://dx.doi.org/10.1046/j.1365-2958.2000.01792.x
[70] Guo, B.P., Brown, E.L., Dorward, D.W., Rosenberg, L.C. and Hook, M. (1998) Decorin-Binding Adhesins from Borrelia burgdorferi. Molecular Microbiology, 30, 711-723.
http://dx.doi.org/10.1046/j.1365-2958.1998.01103.x
[71] Probert, W.S. and Johnson, B.J. (1998) Identification of a 47 kDa Fibrinonectin-Binding Protein Expressed by Borrelia burgdorferi Isolate B31. Molecular Microbiology, 30, 1003-1015.
http://dx.doi.org/10.1046/j.1365-2958.1998.01127.x
[72] Sze, C.S., Zhang, K., Kariu, T., Pal, U. and Li, C. (2012) Borrelai burgdorferi Needs Chemotaxis to Establish Infection in Mammals and to Accomplish Its Enzootic Cycle. Infection and Immunity, 80, 2485-2492.
http://dx.doi.org/10.1128/IAI.00145-12
[73] Rutherford, S.T. and Bassler, B.L. (2012) Bacterial Quorum Sensing: Its Role in Virulence and Possibilities for Its Control. Cold Spring Harb Perspect Med., 2, Article ID: a012427.
[74] Surette, M.G., Miller, M.B. and Bassler, B.L. (1999) Quorum Sensing in Escherichia coli, Salmonella typhimurium, and Vibrio harveyi: A New Family of Genes Responsible for Autoinducer Production. Proceedings of the National Academy of Sciences of the United States of America, 96, 1639-1644.
http://dx.doi.org/10.1073/pnas.96.4.1639
[75] Kilpatrick, A.M. and Randolph, S.E. (2012) Drivers, Dynamics, and Control of Emerging Vector-Borne Zoonotic Diseases. The Lancet, 380, 1946-1955.
http://dx.doi.org/10.1016/S0140-6736(12)61151-9
[76] Lindgren, E., Talleklint, L. and Polfeldt, T. (2000) Impact of Climatic Change on the Northern Latitude Limit and Population Density of the Disease-Transmitting European Tick Ixodes ricinus. Environmental Health Perspectives, 108, 119-123.
http://dx.doi.org/10.1289/ehp.00108119
[77] Ogden, N.H., Lindsay, R.L., Sockett, P.N., Morshed, M. and Artsob, H. (2009) Emergence of Lyme Disease in Canada. Canadian Medical Association Journal, 180, 1221-1224.
http://dx.doi.org/10.1503/cmaj.080148
[78] Léger, E., Vourc’h, G., Vial, L., Chevillon, C. and McCoy, K.D. (2013) Changing Distributions of Ticks: Causes and Consequences. Experimental and Applied Acarology, 59, 219-244.
http://dx.doi.org/10.1007/s10493-012-9615-0
[79] Medlock, J.M., Hansford, K.M., Bormane, A., Derdakova, M., Estrada-Pena, A., George, J.C., et al. (2013) Driving Forces for Changes in Geographical Distribution of Ixodes ricinus Ticks in Europe. Parasites & Vectors, 6, 1.
http://dx.doi.org/10.1186/1756-3305-6-1
[80] Ogden, N.H., Margos, G., Aanensen, D.M., Drebot, M.A., Feil, E.J., Hanincová, K., et al. (2011) Investigation of Genotypes of Borrelia burgdorferi in Ixodes scapularis Ticks Collected in Surveillance in Canada. Applied and Environmental Microbiology, 77, 3244-3254.
http://dx.doi.org/10.1128/AEM.02636-10
[81] Norman, R., Bowers, R.G., Begon, M. and Hudson, P.J. (1999) Persistence of Tick-Borne Virus in the Presence of Multiple Host Species: Tick Reservoirs and Parasite Mediated Competition. Journal of Theoretical Biology, 200, 111- 118.
http://dx.doi.org/10.1006/jtbi.1999.0982
[82] Ogden, N.H., Bigras-Poulin, M., O’Callaghan, C.J., Barker, I.K., Lindsay, L.R., Maarouf, A., et al. (2007) Tick Seasonality, Host Infection Dynamics and Fitness of Ixodes scapularis-Borne Pathogens. Parasitology, 134, 209-227.
http://dx.doi.org/10.1017/S0031182006001417
[83] Lindsay, L.R., Barker, I.K., Surgeoner, G.A., McEwen, S.A., Gillespie, T.J. and Addison, E.M. (1998) Survival and Development of the Different Life Stages of Ixodes scapularis (Acari: Ixodidae) Held within Four Habitats on Long Point, Ontario, Canada. Journal of Medical Entomology, 35, 189-199.
[84] Lindsay, L.R., Barker, I.K., Surgeoner, G.A., McEwen, S.A., Gillespie, T.J. and Robinson, J.T. (1995) Survival and Development of Ixodes scapularis (Acari: Ixodidae) under Various Climatic Conditions in Ontario, Canada. Journal of Medical Entomology, 32, 143-152.
[85] Ogden, N.H., Barker, I.K., Beauchamp, G., Brazeau, S., Charron, D., Maarouf, A., et al. (2006) Investigation of Ground Level and Remote-Sensed Data for Habitat Classification and Prediction of Survival of Ixodes scapularis Ticks in Habitats of Southeastern Canada. Journal of Medical Entomology, 43, 403-414.
http://dx.doi.org/10.1603/0022-2585(2006)043%5B0403:IOGLAR%5D2.0.CO;2
[86] Gatewood, A.G., Liebman, K.A., Vourc’h, G., Bunikis, J., Hamer, S.A., Cortinas, R., et al. (2009) Climate and Tick Seasonality Are Predictors of Borrelia burgdorferi Genotype Distribution. Applied and Environmental Microbiology, 75, 2476-2483.
http://dx.doi.org/10.1128/AEM.02633-08
[87] Rauter, C. and Hartung, T. (2005) Prevalence of Borrelia burgdorferi Sensu Lato Genospecies in Ixodes ricinus Ticks in Europe: A Metaanalysis. Applied and Environmental Microbiology, 71, 7203-7216.
http://dx.doi.org/10.1128/AEM.71.11.7203-7216.2005
[88] Estrada-Pena, A., Venzal, J.M. and Sanchez Acedo, C. (2006) The Tick Ixodes ricinus: Distribution and Climate Preferences in the Western Palaearctic. Medical and Veterinary Entomology, 20, 189-197.
http://dx.doi.org/10.1111/j.1365-2915.2006.00622.x
[89] Jaenson, T.G., Eisen, L., Comstedt, P., Mejlon, H.A., Lindgren, E., Bergstrom, S., et al. (2009) Risk Indicators for the Tick Ixodes ricinus and Borrelia burgdorferi Sensu Lato in Sweden. Medical and Veterinary Entomology, 23, 226-237.
http://dx.doi.org/10.1111/j.1365-2915.2009.00813.x
[90] Pejchalová, K., Zákovská, A., Mejzlíková, M., Halouzka, J. and Dendis, M. (2007) Isolation, Cultivation and Identification of Borrelia burgdorferi Genospecies from Ixodes ricinus Ticks from the City of Brno, Czech Republic. Annals of Agricultural and Environmental Medicine, 14, 75-79.
[91] Haemig, P.D., Waldenstrom, J. and Olsen, B. (2008) Roadside Ecology and Epidemiology of Tick-Borne Diseases. Scandinavian Journal of Infectious Diseases, 40, 853-858.
[92] Ljostad, U., Skogvoll, E., Eikeland, R., et al. (2008) Oral Doxycycline versus Intravenous Ceftriaxone for European Lyme Neuroborreliosis: A Multicentre, Non-Inferiority, Doubleblind, Randomised Trial. The Lancet Neurology, 7, 690-695.
http://dx.doi.org/10.1016/S1474-4422(08)70119-4
[93] Kruger, H., Kohlhepp, W. and Konig, S. (1990) Follow-Up of Antibiotically Treated and Untreated Neuroborreliosis. Acta Neurologica Scandinavica, 82, 59-67.
http://dx.doi.org/10.1111/j.1600-0404.1990.tb01588.x
[94] Kruger, H., Reuss, K., Pulz, M., et al. (1989) Meningoradiculitis and Encephalomyelitis due to Borrelia burgdorferi: A Follow-Up Study of 72 Patients over 27 Years. Journal of Neurology, 236, 322-328.
http://dx.doi.org/10.1007/BF00314373
[95] Ljostad, U. and Henriksen, T.H. (2008) Management of Neuroborreliosis in European Adult Patients. Acta Neurologica Scandinavica, 188, 22-28.
http://dx.doi.org/10.1111/j.1600-0404.2008.01027.x
[96] Hansen, K. and Lebech, A.M. (1992) The Clinical and Epidemiological Profile of Lyme Neuroborreliosis in Denmark 1985-1990. A Prospective Study of 187 Patients with Borrelia burgdorferi Specific Intrathecal Antibody Production. Brain, 115, 399-423.
http://dx.doi.org/10.1093/brain/115.2.399
[97] Topakian, R., Stieglbauer, K., Nussbaumer, K. and Aichner, F.T. (2008) Cerebral Vasculitis and stRoke in Lyme Neuroborreliosis. Two Case Reports and Review of Current Knowledge. Cerebrovascular Diseases, 26, 455-461.
http://dx.doi.org/10.1159/000155982
[98] Oschmann, P., Dorndorf, W., Hornig, C., Schafer, C., Wellensiek, H.J. and Pflughaupt, K.W. (1998) Stages and Syndromes of Neuroborreliosis. Journal of Neurology, 245, 262-272.
http://dx.doi.org/10.1007/s004150050216
[99] Pfister, H.W. and Rupprecht, T.A. (2006) Clinical Aspects of Neuroborreliosis and Post-Lyme Disease Syndrome in Adult Patients. International Journal of Medical Microbiology, 296, 11-16.
http://dx.doi.org/10.1016/j.ijmm.2005.12.003
[100] Gorson, K.C., Kolb, D.A., Marks, D.S., Hayes, M.T. and Baquis, G.D. (2011) Acute Brachial Diplegia Due to Lyme Disease. Neurologist, 17, 24-27.
http://dx.doi.org/10.1097/NRL.0b013e31820038cd
[101] Elamin, M., Alderazi, Y., Mullins, G., Farrell, M.A., O’Connell, S. and Counihan, T.J. (2009) Perineuritis in Acute Lyme Neuroborreliosis. Muscle & Nerve, 39, 851-854.
http://dx.doi.org/10.1002/mus.21289
[102] Logigian, E.L., Kaplan, R.F. and Steere, A.C. (1990) Chronic Neurologic Manifestations of Lyme Disease. The New England Journal of Medicine, 323, 1438-1444.
http://dx.doi.org/10.1056/NEJM199011223232102
[103] Lelovas, P., Dontas, I., Bassiakou, E. and Xanthos, T. (2008) Cardiac Implications of Lyme Disease, Diagnosis and Therapeutic Approach. International Journal of Cardiology, 129, 15-21.
http://dx.doi.org/10.1016/j.ijcard.2008.01.044
[104] Vegsundvag, J., Nordeide, J., Reikvam, A. and Jenum, P. (1993) Late Cardiac Manifestation of Infection with Borrelia burgdorferi (Lyme Disease). BMJ, 307, 173.
http://dx.doi.org/10.1136/bmj.307.6897.173
[105] Stanek, G., Klein, J., Bittner, R. and Glogar, D. (1991) Borrelia burgdorferi as an Etiologic Agent in Chronic Heart Failure? Scandinavian Journal of Infectious Diseases. Supplementum, 77, 85-87.
[106] Kindstrand, E., Nilsson, B.Y., Hovmark, A., Pirskanen, R. and Asbrink, E. (2002) Peripheral Neuropathy in Acrodermatitis Chronica Atrophicans—Effect of Treatment. Acta Neurologica Scandinavica, 106, 253-257.
http://dx.doi.org/10.1034/j.1600-0404.2002.01336.x
[107] Dicaudo, D.J., Su, W.P., Marshall, W.F., Malawista, S.E., Barthold, S. and Persing, D.H. (1994) Acrodermatitis Chronica Atrophicans in the United States: Clinical and Histopathologic Features of Six Cases. Cutis, 54, 81-84.
[108] Jaffe, E.S., Harris, N.L., Stein, H. and Vardiman, J. (2001) World Health Organization Classification of Tumours. In: Jaffe, E.S., Harris, N.L., Stein, H. and Vardiman, J., Eds., Pathology and Genetics of Tumours of Haematopoietic and Lymphoid Tissues, IARC Press, Lyon, 10-302.
[109] Suarez, F., Lortholary, O., Hermine, O., et al. (2006) Infection-Associated Lymphomas Derived from Marginal Zone B Cells: A Model of Antigen-Driven Lymphoproliferation. Blood, 107, 3034-3044.
http://dx.doi.org/10.1182/blood-2005-09-3679
[110] Goos, M. (1971) Acrodermatitis Chronica Atrophicans and Malignant Lymphoma. Acta Dermato-Venereologica (Stockholm), 51, 457-459.
[111] Garbe, C., Stein, H., Dienemann, D. and Orfanos, C.E. (1991) Borrelia burgdorferi Associated Cutaneous B Cell Lymphoma: Clinical and Immunologic Characterization of Four Cases. Journal of the American Academy of Dermatology, 24, 584-590.
http://dx.doi.org/10.1016/0190-9622(91)70088-J
[112] Rijlaarsdam, J.U., Van der Putte, S.C.J., Berti, E., et al. (1993) Cutaneous Immunocytomas: A Clinicopathological Study of 26 Cases. Histopathology, 23, 117-125.
http://dx.doi.org/10.1111/j.1365-2559.1993.tb00469.x
[113] Munksgaard, L., Obitz, E.R., Goodlad, J.R., et al. (2004) Demonstration of B. burgdorferi-DNA in Two Cases of Nodal Lymphoma. Leukemia & Lymphoma, 45, 1721-1723.
http://dx.doi.org/10.1080/10428190410001683723
[114] Schollkopf, C., Melbye, M., Munksgaard, L., Smedby, K.E., Rostgaard, K., Glimelius, B., Chang, E.T., Roos, G., Hansen, M., Adami, H. and Hjalgrim, H. (2008) Borrelia Infection and Risk of Non-Hodgkin Lymphoma. Blood, 111, 5524-5529.
http://dx.doi.org/10.1182/blood-2007-08-109611
[115] Shapiro, E.D. and Gerber, M.A. (2006) Chapter 5. Lyme Disease. In: Baker, C.J., Klein, J. and Remington, J., Eds., Infectious Diseases of the Fetus and Newborn Infant, Elsevier, Philadelphia, 485-497.
http://dx.doi.org/10.1016/B0-72-160537-0/50017-7
[116] Silver, R.M., Yang, L., Daynes, R.A., Branch, D.W., et al. (1995) Fetal Out Comein Murine Lyme Disease. Infection and Immunity, 63, 66-72.
[117] Schlesinger, P.A., Duray, P.H., Burke, B.A., Steere, A.C. and Stillman, M.T. (1985) Maternal-Fetal Transmission of Lyme Disease Spirochete, Borrelia burgdorferi. Annals of Internal Medicine, 103, 67-68.
http://dx.doi.org/10.7326/0003-4819-103-1-67
[118] Weber, K., Bratzke, H.J., Neubert, U., Wilske, B. and Duray, P.H. (1988) Borrelia burgdorferi in a Newborn Despite Oral Penicillin for Lyme borreliosis during Pregnancy. The Pediatric Infectious Disease Journal, 7, 286-289.
http://dx.doi.org/10.1097/00006454-198804000-00010
[119] Mylonas, I. (2011) Borreliosis during Pregnancy: A Risk for the Unborn Child. Vector-Borne and Zoonotic Diseases, 11, 891-898.
http://dx.doi.org/10.1089/vbz.2010.0102
[120] Evans, J. (1999) Lyme Disease. Current Opinion in Rheumatology, 11, 281-288.
http://dx.doi.org/10.1097/00002281-199907000-00010
[121] Nadelman, R.B. and Wormser, G.P. (1998) Lyme borreliosis. The Lancet, 352, 557-565.
http://dx.doi.org/10.1016/S0140-6736(98)01146-5
[122] Pfister, H.W., Wilske, B. and Weber, K. (1994) Lyme borreliosis: Basic Science and Clinical Aspects. The Lancet, 343, 1013-1016.
http://dx.doi.org/10.1016/S0140-6736(94)90130-9
[123] Striker, R.B. and Winger, E.E. (2001) Decreased CD57 Lymphocyte Subset in Patients with Chronic Lyme Disease. Immunology Letters, 76, 43-48.
http://dx.doi.org/10.1016/S0165-2478(00)00316-3
[124] Sansoni, P., Cossarizza, A., Brianti, V., Fagnoni, F., Snelli, G., Monti, D., Marcato, A., Passeri, G., Ortolani, C. and Forti, E. (1993) Lymphocyte Subsets and Natural Killer Cell Activity in Healthy Old People and Centenarians. Blood, 82, 2767-2773.
[125] Dinges, D.F., Douglas, S.D., Zaugg, L., Campbell, D.E., McMann, J.M., Whitehouse, W.G., Orne, E.C., Kapoor, S.C., Icaza, E. and Orne, M.T. (1994) Leukocytosis and Natural Killer Cell Function Parallel Neurobehavioral Fatigue Induced by 64 Hours of Sleep Deprivation. Journal of Clinical Investigation, 93, 1930-1939.
http://dx.doi.org/10.1172/JCI117184
[126] Wang, E.C. and Borysiewicz, L.K. (1995) The Role of CD8, CD57 Cells in Human Cytomegalovirus and Other Viral Infections. Scandinavian Journal of Infectious Diseases, 99, 69-77.
[127] Yssel, H., Shanafelt, M.C., Soderberg, C., Schneider, P.V., Anzola, J. and Peltz, G. (1991) Borrelia burgdorferi Activates a T Helper Type 1-Like T Cell Subset in Lyme Arthritis. The Journal of Experimental Medicine, 174, 593-601.
http://dx.doi.org/10.1084/jem.174.3.593
[128] Kreuzfelder, E., Shen, G., Bittorf, M., Scheiermann, N., Thraenhart, O., Seidel, D. and Grosse-Wilde, H. (1992) Enumeration of T, B and Natural Killer Peripheral Blood Cells of Patients with Multiple Sclerosis and Controls. European Neurology, 32, 190-194.
http://dx.doi.org/10.1159/000116820
[129] Eoli, M., Ferrarini, M., Dufour, A., Heltaj, S., Bevilacqua, L., Comi, G., Cosi, V., Filippini, G., Martinelli, V. and Milanese, C. (1993) Presence of T-Cell Subset Abnormalities in Newly Diagnosed Cases of Multiple Sclerosis and Relationship with Short-Term Clinical Activity. Journal of Neurology, 240, 79-82.
http://dx.doi.org/10.1007/BF00858721
[130] Arai, K., Yamamura, S., Seki, S., Hanyu, T., Takahashi, H.E. and Abo, T. (1998) Increase of CD57 T Cells in Knee Joints and Adjacent Bone Marrow of Rheumatoid Arthritis Patients: Implication for an Anti-Inflammatory Role. Clinical Experimental Immunology, 111, 345-352.
http://dx.doi.org/10.1046/j.1365-2249.1998.00511.x
[131] Imberti, L., Sottini, A., Signorini, S., Gorla, R. and Primi, D. (1997) Oligoclonal CD4 CD57 T-Cell Expansions Contribute to the Imbalanced T-Cell Receptor Repertoire of Rheumatoid Arthritis Patients. Blood, 89, 2822-2832.
[132] Gallo, P., Chiusole, M., Sanzari, M., Sivieri, S., Piccinno, M.G., Argentiero, V., Rizzotti, P. and Tavolato, B. (1994) Effect of High-Dose Steroid Therapy on T-Cell Populations. A Longitudinal Study in MS Patients. Acta Neurologica Scandinavica, 89, 95-101.
http://dx.doi.org/10.1111/j.1600-0404.1994.tb01642.x
[133] Shoemaker, R.C., Giclas, P.C., Crowder, C., House, D. and Glovsky, M.M. (2008) Complement Split Products C3a and C4a Are Early Markers of Acute Lyme Disease in Tick Bite Patients in the United States. International Archives of Allergy and Immunology, 146, 255-261.
http://dx.doi.org/10.1159/000116362
[134] Stricker, R.B., Savely, V.R., Montanya, N.C. and Giclas, P.C. (2008) Complement Split Products C3a and C4a in Chronic Lyme Disease. Scandinavian Journal of Immunology, 69, 64-69.
http://dx.doi.org/10.1111/j.1365-3083.2008.02191.x
[135] Mocco, J., Wilson, D.A., Komotar, R.J., et al. (2006) Alterations in Plasma Complement Levels after Human Ischemic Stroke. Neurosurgery, 59, 28-33.
http://dx.doi.org/10.1227/01.NEU.0000219221.14280.65
[136] Mack, W.J., Ducruet, A.F., Hickman, Z.L., et al. (2007) Early Plasma Complement C3a Levels Correlate with Functional Outcome after Aneurysmal Subarachnoid Hemorrhage. Neurosurgery, 61, 255-260.
http://dx.doi.org/10.1227/01.NEU.0000255518.96837.8E
[137] Sorensen, B., Streib, J.E., Strand, M., et al. (2003) Complement Activation in a Model of Chronic Fatigue Syndrome. Journal of Allergy and Clinical Immunology, 112, 397-403.
http://dx.doi.org/10.1067/mai.2003.1615
[138] Panelius, J., Lahdenne, P., Saxen, H., et al. (2003) Diagnosis of Lyme Neuroborreliosis with Antibodies to Recombinant Proteins DbpA, BBK32, and OspC, and VlsE IR6 Peptide. Journal of Neurology, 250, 1318-1327.
http://dx.doi.org/10.1007/s00415-003-0205-2
[139] Skarpaas, T., Liostad, U., Sobye, M. and Mygland, A. (2007) Sensitivity and Specificity of a Commercial C6 Peptide Enzyme Immuno Assay in Diagnosis of Acute Lyme Neuroborreliosis. European Journal of Clinical Microbiology Infectious Diseases, 26, 675-677.
http://dx.doi.org/10.1007/s10096-007-0336-y
[140] Tjernberg, I., Schon, T., Ernerudh, J., Wistedt, A.C., Forsberg, P. and Eliasson, I. (2008) C6-Peptide Serology as Diagnostic Tool in Neuroborreliosis. APMIS, 116, 393-399.
http://dx.doi.org/10.1111/j.1600-0463.2008.00842.x
[141] Vermeersch, P., Resseler, S., Nackers, E. and Lagrou, K. (2009) The C6 Lyme Antibody Test Has Low Sensitivity for Antibody Detection in Cerebrospinal Fluid. Diagnostic Microbiology and Infectious Disease, 64, 347-349.
http://dx.doi.org/10.1016/j.diagmicrobio.2009.03.013
[142] Wilske, B., Fingerle, V. and Schulte-Spechtel, U. (2007) Microbiological and Serological Diagnosis of Lyme borreliosis. FEMS Immunology and Medical Microbiology, 49, 13-21.
http://dx.doi.org/10.1111/j.1574-695X.2006.00139.x
[143] Brouqui, P., Bacellar, F., Baranton, G., et al. (2004) Guidelines for the Diagnosis of Tick-Borne Bacterial Diseases in Europe. Clinical Microbiology and Infection, 10, 1108-1132.
http://dx.doi.org/10.1111/j.1469-0691.2004.01019.x
[144] Johnson, B.J., Robbins, K.E., Bailey, R.E., et al. (1996) Serodiagnosis of Lyme Disease: Accuracy of a Two-Step Approach Using a Flagella-Based ELISA and Immunoblotting. The Journal of Infectious Diseases, 174, 346-353.
http://dx.doi.org/10.1093/infdis/174.2.346
[145] Ulvestad, E. and Kristoffersen, E.K. (2002) False Positive Serological Test in Suspected Borreliosis. Tidsskrift For Den Norske Laegeforening, 122, 88-90.
[146] Mygland, A., Skarpaas, T. and Ljostad, U. (2006) Chronic Polyneuropathy and Lyme Disease. European Journal of Neurology, 13, 1213-1215.
http://dx.doi.org/10.1111/j.1468-1331.2006.01395.x
[147] Van Dam, A.P., Kuiper, H., Vos, K., et al. (1993) Different Genospecies of Borrelia burgdorferi Are Associated with Distinct Clinical Manifestations of Lyme borreliosis. Clinical Infectious Diseases, 17, 708-717.
http://dx.doi.org/10.1093/clinids/17.4.708
[148] Von Stedingk, L.V., Olsson, I., Hanson, H.S., Asbrink, E. and Hovmark, A. (1995) Polymerase Chain Reaction for Detection of Borrelia burgdorferi DNA in Skin Lesions of Early and Late Lyme borreliosis. European Journal of Clinical Microbiology Infectious Diseases, 14, 1-5.
http://dx.doi.org/10.1007/BF02112610
[149] Jaulhac, B., Heller, R., Limbach, F.X., et al. (2000) Direct Molecular Typing of Borrelia burgdorferi Sensu Lato Species in Synovial Samples from Patients with Lyme Arthritis. Journal of Clinical Microbiology, 38, 1895-1900.
[150] Eiffert, H., Karsten, A., Thomssen, R. and Christen, H.J. (1998) Characterization of Borrelia burgdorferi Strains in Lyme Arthritis. Scandinavian Journal of Infectious Diseases, 30, 265-268.
http://dx.doi.org/10.1080/00365549850160918
[151] Cerar, T., Ogrinc, K., Cimperman, J., Lotric-Furlan, S., Strle, F. and Ruzic-Sabljic, E. (2008) Validation of Cultivation and PCR Methods for Diagnosis of Lyme Neuroborreliosis. Journal of Clinical Microbiology, 46, 3375-3379.
http://dx.doi.org/10.1128/JCM.00410-08
[152] Lebech, A.M. (2002) Polymerase Chain Reaction in Diagnosis of Borrelia burgdorferi Infections and Studies on Taxonomic Classification. APMIS Supplement, 105, 1-40.
[153] Molloy, P.J., Persing, D.H. and Berardi, V.P. (2001) False-Positive Results of PCR Testing for Lyme Disease. Clinical Infectious Diseases, 33, 412-413.
http://dx.doi.org/10.1086/321911
[154] Cameron, D., Gaito, A., Harris, N., et al. (2004) Evidence-Based Guidelines for the Management of Lyme Disease. Expert Review of Anti-infective Therapy, 2, S1-S13.
http://dx.doi.org/10.1586/14789072.2.1.S1
[155] Wormser, G.P., Dattwyler, R.J., Shapiro, E.D., et al. (2006) The Clinical Assessment, Treatment, and Prevention of Lyme Disease, Human Granulocytic Anaplasmosis, and Babesiosis: Clinical Practice Guidelines by the Infectious Diseases Society of America. Clinical Infectious Diseases, 43, 1089-1134.
http://dx.doi.org/10.1086/508667
[156] Stanek, G., O’Connell, S., Cimmino, M., et al. (1996) European Union Concerted Action on Risk Assessment in Lyme borreliosis: Clinical Case Definitions for Lyme borreliosis. Wiener Klinische Wochenschrift, 108, 741-747.
[157] Mygland, A., Ljostad, U., Fingerle, V., Rupprecht, T., Schmutzhard, E. and Steiner, I. (2010) EFNS Guidelines on the Diagnosis and Management of European Lyme Neuroborreliosis. European Journal of Neurology, 17, 8-16.
http://dx.doi.org/10.1111/j.1468-1331.2009.02862.x                                                            eww141117lx

Cut Throat Injuries—A Retrospective Study at a Tertiary Referral Hospital

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=51172#.VFgtxWfHRK0

ABSTRACT

Objective: To analyze the socio demographic pattern, sex and age ratio, common causes, the most common site and extent of the injury in the patients with cut throat injury at our hospital. To compare the same with previous similar studies conducted at other centers in different parts of the world. Setting: Department of ENT, Government Rajaji Hospital, Madurai, India from January 2013 to June 2014. Methods: A total of 51 cases of cut throat injury were included in the study. Separate proforma was prepared to collect the patients’ data. Structured questionnaire was offered. Results: 51 cases of cut throat injury patients were included in the study. Age varied from 4 years to 80 years. Out of 51 cases 43 were males, 7 were females and one male child. Male to female ratio was 6.2:1. All the patients were belonging to lower socioeconomic status (Kuppusamy class 5). Amongst them 26 cases (50.98%) were due to homicidal attack; 13 cases (25.49%) due to suicidal attempt; 7 cases (13.72%) due to road traffic accident; 4 cases (7.84%) due to bull gore injury; 1 case (1.96%) due to accidental fall. Emergency tracheostomy was done in 16 cases (33.33%). An average hospital stay for most of the patients was less than 3 weeks. 2 victims (3.92%) died due to haemorhage, aspiration pnuemonia and septicemia. Conclusions: Our study found that the majority of the victims were males of age between 20 years to 40 years from poor socioeconomic status. Social commitment and political motivation, decrease in the poverty, individual awareness, increase in economic growth, and literacy rate will prevent the cut throat injuries. Early and improved management will reduce the mortality and morbidity.

Cite this paper

Panchappa, S. , Natarajan, D. , Karuppasamy, T. , Jeyabalan, A. , Ramamoorthy, R. , Thirani, S. and Swamirao, R. (2014) Cut Throat Injuries—A Retrospective Study at a Tertiary Referral Hospital. International Journal of Otolaryngology and Head & Neck Surgery, 3, 323-329. doi: 10.4236/ijohns.2014.36058.

References

[1] Fagan, J.J. and Nicol, A.J. (2008) Neck Trauma. In: Gleeson, M., Ed., Scott-Brown’s Otorhinolaryngology, Head and Neck Surgery, 7th Edition, Great Britain, Hodder Arnold, 1768.
[2] Penden, M., McGee, K. and Sharma, G. (2002) The Injury Chart Book: A Graphical Overview of the Global Burden of Injuries. World Health Organization, Gene-va.
[3] Bhattacharjee, N., Arefin, S.M., Mazumder, S.M. and Khan, M.K. (1997) Cut Throat Injury: Retrospective Study of 26 Cases. Bangladesh Medical Research Council Bulletin, 23, 87-90.
[4] Ladapo, A.A. (1979) Open Injuries of the Anterior Neck. Ghana Medical Journal, 18, 182-186.
[5] Rao, B.K., Singh, V.K., Ray, S. and Mehra, M. (2004) Airway Management in Trauma. Indian Journal of Critical Care Medicine, 8, 98-105.
[6] Lloyd, M.S. (2004) Matador versus Taurus: Bull Gore Injury. Annals of the Royal College of Surgeons of England, 86, 3-5.
http://dx.doi.org/10.1308/003588404772614597
[7] Iseh, K.R. and Obembe, A. (2011) Anterior Neck Injuries Presenting as Cut Throat Emergencies in a Tertiary Health Institution in North Western Nigeria. Nigerian Medical Journal, 20, 475-478.
[8] Onotai, L.O. and Ibekwe, U. (2010) The Pattern of Cut Throat Injuries in the University of Port-Harcourt Teaching Hospital, Portharcourt. Nigerian Medical Journal, 19, 264-266.
[9] Kendall, J.L., Anglin, D. and Demetriades, D. (1998) Penetrating Neck Trauma. Emergency Medicine Clinics of North America, 16, 85-105.
http://dx.doi.org/10.1016/S0733-8627(05)70350-3
[10] Aich, M., Alam, K., Talukder, D.C., Sarder, R., Fakir, A.Y. and Hossain, M. (2011) Cut Throat Injury: Review of 67 Cases. Bangladesh Journal of Otorhinolaryngology, 17, 5-13.
http://dx.doi.org/10.3329/bjo.v17i1.7616                                                                                eww141104lx
[11] Kundu, R.K., Adhikary, B. and Naskar, S. (2013) A Clinical Study of Management and Outcome of 60 Cut Throat Injuries.

Use of Propolis for Topical Treatment of Dermatophytosis in Dog

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50929#.VFBP1FfHRK0

ABSTRACT

Here we present three clinical cases of canine dermatophytosis resolved with topical propolis treatment that involved alopecia and well-demarcated erythematous lesions. These cases were positively identified by direct observation of samples from the affected zones with 10% KOH. Each sample was cultured, leading to the isolation of Microsporum gypseum in one case and Microsporum canis in the other two cases. The animals’ subsequent treatment included bathing using a commercial soap with propolis every seven days for 3 to 8 weeks, as well as the use of a propolis-containing ointment elaborated in our laboratory, which was applied to the lesions once a day for three weeks. From the second week of treatment, all cultures were negative. At the end of treatment, all cases displayed full recovery of the injuries and hair growth in these areas. In these clin-ical cases, treatment with propolis was effective, supporting the use of propolis as a promising natural alternative with no known collateral effects.

Cite this paper

Cruz Sánchez, T. , García, P. , Zamora, C. , Martínez, M. , Valencia, V. and Orozco, A. (2014) Use of Propolis for Topical Treatment of Dermatophytosis in Dog. Open Journal of Veterinary Medicine, 4, 239-245. doi: 10.4236/ojvm.2014.410028.

References

[1] Del Palacio, A., Garau, M. and Cuétara, M. (2002) Tratamiento actual de las dermatofitosis. Revista Iberoamericana de Micología Médica, 19, 68-71. http://www.reviberoammicol.com/2002-19/068071.pdf
[2] García, P., Ruiz, J., García, L. and Linares, M. (2004) Dermatofitosis por Microsporum gypseum. Descripción de Ocho casos y revisión de la literatura. Revista Iberoamericana de Micología Médica, 21, 147-149.www.reviberoammicol.com/2004-21/147149.pdf
[3] Yehia, A. and Mahmoud, G. (2003) In Vitro Evaluation of Antidermatophytic Activity of Egyptian Bee Propolis in Combination with Plant Essential Oils in Sheep Hoof Plate: An Experimental Model. Mycobiology, 31, 99-104. http://dx.doi.org/10.4489/MYCO.2003.31.2.099
[4] Mugnaini, L.A., Nardoni, A., Pintoa, L., Pistelli, B., Leonardi, M.B. and Pisseri, F. (2012) In Vitro and in Vivo Antifungal Activity of Some Essential Oils against Feline Isolates of Microsporum canis. Journal of Micology Medicine, 22, 179-184. http://dx.doi.org/10.1016/j.mycmed.2012.04.003
[5] Imhof, T.M., Lipovac, M., Kurz, Ch., Barta, M., Verhoeven, H.C. and Huber, J.C. (2005) Propolis Solution for the Treatment of Chronic Vaginitis. International Journal of Gynecology and Obstetrics, 89, 127-132. http://dx.doi.org/10.1016/j.ijgo.2005.01.033
[6] Bogdanov, S. (2012) Propolis: Composition, Health, Medicine: A Review.
http://www.bee-hexagon.net/files/file/fileE/Health/PropolisBookReview.pdf
[7] De Castro, S.L. (2001) Propolis: Biological and Pharmacological Activities Therapeutic Uses of This Bee-Product. Annual Review of Biomedical, 3, 49-83.
http://132.248.9.34/hevila/ARBSAnnualreviewofbiomedicalsciences/2001/vol3/2.pdf
[8] Agüero, M.B., Gonzalez, M., Lima, B., Svetaz, L., Sánchez, M., Zacchino, S., Feresin, G.E., Schmeda-Hirschmann, G., Palermo, J., Wunderlin, D. and Tapia, A. (2010) Argentinean Propolis from Zuccagnia punctata Cav. (Caesalpinieae) Exudates: Phytochemical Characterization and Antifungal Activity. Journal of Agricultural and Food Chemistry, 58, 194-201. http://dx.doi.org/10.1021/jf902991t
[9] Koneman, E.W. (2008) Microbiological Diagnosis Text and Color Atlas Ed. Médica Panamericana. Mèxico, 1114-1115.
[10] Larone, D.H. (2011) Medically Important Fungi: A Guide to Identification. ASM Press, Washington DC.
[11] Phongpaichit, S., Subhadhirasakul, S. and Wattanapiromsakul, Ch. (2005) Antifungal Activities of Extracts from Thai Medicinal Plants against Opportunistic Fungal Pathogens Associated with AIDS Patients. Mycoses, 48, 333-338. http://dx.doi.org/10.1111/j.1439-0507.2005.01142.x
[12] Ye, X.Y., Wang, H. and Ng, T.B. (1999) First Chromatographic Isolation of an Antifungal Thaumatin-Like Protein from French Bean Legumes and Demonstration of Its Antifungal Activity. Biochemical and Biophysical Research Communications, 263, 130-134.
[13] Wang, H. and Ng, T.B. (2002) Isolation of an Antifungal Thaumatin-Like Protein from Kiwi Fruits. Phytochemistry, 61, 1-6. http://dx.doi.org/10.1016/S0031-9422(02)00144-9
[14] Londoño, A., Canales, M., Hernández, T.,ávila, G., Serrano, R., Penieres, J.G., García, C.G., Cruz T.A., et al. (2010) Antibacterial Comparative Study between Extracts of Mexican Propolis and of Three Plants Which Use Apis mellifera for Its Production. Journal of Animal and Veterinary Advances, 9, 1250-1254.
http://dx.doi.org/10.3923/javaa.2010.1250.1254
[15] Ngatu, N.R., Saruta, T., Hirota, R., Eitoku, M., Severin, L.N., Andre, M.B., Matsui, T. and Suganuma, N. (2012) Brazilian Green Propolis Extracts Improve Tinea pedis interdigitalis and Tinea corporis. Journal of Alternative and Complementary Medicine, 18, 8-9. http://dx.doi.org/10.1089/acm.2011.0696
[16] Rodrigues Santos, V. (2012) Propolis: Alternative Medicine for the Treatment of Oral Microbial. In: Sakagami, H., Ed., Diseases in Alternative Medicine, InTech, 134-169.
[17] Lozina, L.A., Peichoto, M.E., Boehringer, S.I., Koscinczuk, P., Granero, G.E. and Acosta, O.C. (2010) Efficacy of Argentine Propolis Formulation for Topical Treatment of Canine Otitis Extern. Arquivo Brasileiro de Medicina Veterinária e Zootecnia, 62, 1359-1366. http://dx.doi.org/10.1590/S0102-09352010000600010
[18] Cam, Y., Koc, A.N., Silici, S., Günes, V., Buldu, H., Onmaz, A.C. and Kasap, F.F. (2009) Treatment of Dermatophytosis in Young Cattle with Propolis and Whitfield’s Ointment. Veterinary Record, 165, 57-58.                 eww141029lx