Semiconductor ZnO Nano-Rods Thin Film Grown on Silver Wire for Hemoglobin Biosensor Fabrication

Read  full  paper  at:http://www.scirp.org/journal/PaperInformation.aspx?PaperID=54110#.VO2BbCzQrzE

Wurtzite hexagonal ZnO semiconductor nano-rods (NRs) thin films were grown on silicon substrates and silver wire with diameter equal 68 nm. Sol gel (SG) and aqueous chemical growth (ACG) methods by two steps of preparation (seed layers and nano-rod growth) are used for samples preparation. The structural and morphological properties are evaluated using X-ray diffraction (XRD) and scanning electron microscope (SEM). The proposed iron ion sensor has shown good linearity for a wide concentration range from 0.078 M/L to 0.26 M/L of iron ions. The results show that the electrode is highly sensitive to iron ions with a slope around 47.8 mV/decade with a regression coefficient R2 = 0.96.

Cite this paper

Battisha, I. , Wahab, H. , Salama, A. , El Saeid, A. , Willander, M. and Nur, O. (2015) Semiconductor ZnO Nano-Rods Thin Film Grown on Silver Wire for Hemoglobin Biosensor Fabrication. New Journal of Glass and Ceramics, 5, 9-15. doi: 10.4236/njgc.2015.52002.

References

[1] Ali, S.U., Ibupoto, Z.H., Salman, S., Nur, O., Willander, M. and Danielsson, B. (2011) Selective Determination of Urea Using Urease Immobilized on ZnO Nanowires. Sensors and Actuators B: Chemical, 160, 637-643.
http://dx.doi.org/10.1016/j.snb.2011.08.041
[2] Ali, S.U., Kashif, M., Ibupoto, Z.H., Alam, F., Hashim, U. and Willander, M. (2011) Functionalised Zinc Oxide Nanotube Arrays as Electrochemical Sensors for the Selective Determination of Glucose. Micro & Nano Letters, 6, 609-613.
http://dx.doi.org/10.1049/mnl.2011.0310
[3] Dev, A., Panda, S.K., Kar, S., Chakrabarti, S. and Chaudhuri, S. (2006) Surfactant-Assisted Routeto Synthesize Well- Aligned ZnO Nanorod Arrays on Sol-Gel-Derived ZnO Thin Films. The Journal of Physical Chemistry B, 110, 14266- 14272. http://dx.doi.org/10.1021/jp062729l
[4] Fulati, A., Ali, M.U., Asif, M.H., Alvi, N. ul H., Willandera, M., Brännmark, C., Strålfors, P., Börjesson, S.I., Elinder, F. and Danielsson, B. (2010) An Intracellular Glucose Biosensor Based on Nanoflake ZnO. Sensors and Actuators B: Chemical, 150, 673-680. http://dx.doi.org/10.1016/j.snb.2010.08.021
[5] Wahab, H.A., Nur, O., Willander, M., Salama, A.A., El Saeid, A.A. and Battisha, I.K. (2014) Growth of Zinc Oxide (ZnO) Nano-Rod Thin Film for Hemoglobin Biosensor Applications Prepared Using Sol-Gel and Aqueous Chemical Growth. International Journal of Engineering and Innovative Technology (IJEIT), 4, 6-13.
[6] Asif, M.H., Ali, M.U., Nur, O., Willander, M., Brannmark, C., Stralfors, P., Englund, U.H., Elinder, F. and Danielsson, B. (2010) Functionalised ZnO-Nanorod-Based Selective Electrochemical Sensor for Intracellular Glucose. Biosensors and Bioelectronics, 25, 2205-2211.
http://dx.doi.org/10.1016/j.bios.2010.02.025
[7] Khun, K., Ibupoto, Z.H. Ali, S.U., Chey, C.O., Nur, O. and Willander, M. (2012) Iron Ion Sensor Based on Functionalized ZnO Nanorods. Electroanalysis, 24, 521-528.
[8] Kim, Y.H., Baek, N.S., Kim, K.H. and Jung, S.-D. (2012) Simplifying Patterning Process of ZnO Nanowires by One Step Development and Etching Process. Journal of Sol-Gel Science and Technology, 64, 304-308.
http://dx.doi.org/10.1007/s10971-012-2858-8
[9] Tsaya, C.-Y., Fan, K.-S., Chen, S.-H. and Tsai, C.-H. (2010) Preparation and Characterization of ZnO Transparent Semiconductor Thin Films by Sol-Gel Method. Journal of Alloys and Compounds, 495, 126-130.
http://dx.doi.org/10.1016/j.jallcom.2010.01.100
[10] Yin, Y.T., Que, W.X. and Kam, C.H. (2010) ZnO Nanorods on ZnO Seed Layer Derived by Sol-Gel Process. Journal of Sol-Gel Science and Technology, 53, 605-612.
[11] Zak, A.K., Abrishami, M.E., Abd. Majid, W.H., Yousefi, R. and Hosseini, S.M. (2011) Effects of Annealing Temperature on Some Structural and Optical Properties of ZnO Nanoparticles Prepared by a Modified Sol-Gel Combustion Method. Ceramics International, 37, 393-398.
http://dx.doi.org/10.1016/j.ceramint.2010.08.017
[12] Wahab, H.Z., Salama, A.A., El-Saeid, A.A., Nur, O., Willander, M. and Battisha, I.K. (2013) Optical, Structural and Morphological Studies of (ZnO) Nano-Rod Thin Films for Biosensor Applications Using Sol Gel Technique. Results in Physics, 3, 46-51. http://dx.doi.org/10.1016/j.rinp.2013.01.005
[13] Liu, Z.F., Ya, J. and Lei, E. (2010) Effects of Substrates and Seed Layers on Solution Growing ZnO Nanorods. Journal of Solid State Electrochemistry, 14, 957-963.                   eww150225lx
Advertisements

Functionalization and Structural Characterization of a Novel Nacrite-LiCl Nanohybrid Material

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53687#.VM83OCzQrzE

ABSTRACT

The nacrite-LiCl hybrid composite material was prepared at room temperature by indirect inter-calation of lithium chloride between the planar layers of nacrite, a clay mineral, using acetone as a solvent. The structural identification of the hybrid clay material was determined by means of X-ray diffraction (XRD), thermogravimetric analysis (TGA) and infrared spectroscopy (IR). The qualitative XRD analysis showed that the basal spacing value increased from 0.72 nm to 1.14 nm and revealed that the alkali halide intercalated successfully in the interlayer space of the nacrite framework. The quantitative XRD analysis allowed us to determine the optimum structural parameters related to the position and number of keyed ions and water molecules per half unit cell calculated along the c* axis and the goodness of fit parameter (Rp). The thermal properties of the elaborated hybrid were in great accordance with the XRD study and confirm the intercalation of the hydrated salt in the interlamellar space of nacrite. Moreover, IR spectroscopy enabled the study of the interactions between the silicate ‘‘networks’’ and the alkali halide.

Cite this paper

Jaafar, N. , Naamen, S. , Rhaiem, H. and Amara, A. (2015) Functionalization and Structural Characterization of a Novel Nacrite-LiCl Nanohybrid Material. American Journal of Analytical Chemistry, 6, 202-215. doi: 10.4236/ajac.2015.63019.

References

[1] Bergaya, F. and Lagaly, G. (2006) General Introduction: Clays, Clay Minerals, and Clay Science. In: Bergaya, F., Theng, B.K.G. and Lagaly, G., Eds., Handbook of Clay Science: Developments in Clay Science, Vol. 1, Elsevier, Amsterdam, 1-18.
http://dx.doi.org/10.1016/S1572-4352(05)01001-9
[2] Silva, F.A.N.G., Luz, A.B., Sampaio, J.A., Bertolino, L.C., Scorzelli, R.B., Duttine, M. and da Silva, F.T. (2009) Technological Characterization of Kaolin: Study of the Case of the Borborema-Serido Region (Brazil). Applied Clay Science, 44, 189-193.
http://dx.doi.org/10.1016/j.clay.2009.01.015
[3] Carretero, M.I. and Pozo, M. (2010) Clay and Non-Clay Minerals in the Pharmaceutical and Cosmetic Industries Part II. Active Ingredients. Applied Clay Science, 47, 171-181.
http://dx.doi.org/10.1016/j.clay.2009.10.016
[4] Rondón, W., Freire, D., de Benzo, Z., Sifontes, A.B., González, Y., Valero, M. and Brito, J.L. (2013) Application of 3A Zeolite Prepared from Venezuelan Kaolin for Removal of Pb(II) from Wastewater and Its Determination by Flame Atomic Absorption Spectrometry. American Journal of Analytical Chemistry, 4, 584-594.
http://dx.doi.org/10.4236/ajac.2013.410069
[5] Kabwadza-Corner, P., Munthali, M.W., Johan, E. and Matsue, N. (2014) Comparative Study of Copper Adsorptivity and Selectivity toward Zeolites. American Journal of Analytical Chemistry, 5, 395-405.
http://dx.doi.org/10.4236/ajac.2014.57048
[6] Castellano, M., Turturro, A., Riani, P., Montanari, T., Finocchio, E., Ramis, G. and Busca, G. (2010) Bulk and Surface Properties of Commercial Kaolins. Applied Clay Science, 48, 446-454.
http://dx.doi.org/10.1016/j.clay.2010.02.002
[7] Bailey, S.W. (1963) Polymorphism of the Kaolin Minerals. American Mineralogist, 48, 1197-1209.
[8] Yariv, S., Lapides, I., Michaelian, K.H. and Lahav, N. (1999) Thermal Intercalation of Alkali Halides into Kaolinite. Journal of Thermal Analysis and Calorimetry, 56, 865-884.
http://dx.doi.org/10.1023/A:1010187029708
[9] Yariv, S. and Lapides, I. (2000) The Effect of Mechanochemical Treatments on Clay Minerals and the Mechanochemical Adsorption of Organic Materials onto Clay Minerals. Journal of Materials Synthesis and Processing, 8, 223-233.
[10] Komori, Y. and Sugahara, Y. (1998) A Kaolinite-NMF-Methanol Intercalation Compound as a Versatile Intermediate for Further Intercalation Reaction of Kaolinite. Journal of Materials Research, 13, 930-934.
http://dx.doi.org/10.1557/JMR.1998.0128
[11] Orzechowski, K., Slonka, T. and Glowinski, J. (2006) Dielectric Properties of Intercalated Kaolinite. Journal of Physics and Chemistry of Solids, 67, 915-919.
http://dx.doi.org/10.1016/j.jpcs.2006.03.001
[12] Letaief, S., Diaco, T., Pell, W., Gorelsky, S.I. and Detellier, C. (2008) Ionic Conductivity of Nanostructured Hybrid Materials Designed from Imidazolium Ionic Liquids and Kaolinite. Chemistry of Materials, 20, 7136-7142.
http://dx.doi.org/10.1021/cm800758c
[13] Vagvolgyi, V., Kovacs, J., Horvath, E., Kristof, J. and Mako, E. (2008) Investigation of Mechanochemically Modified Kaolinite Surfaces by Thermoanalytical and Spectroscopic Methods. Journal of Colloid and Interface Science, 317, 523-529. http://dx.doi.org/10.1016/j.jcis.2007.09.085
[14] Michaelian, K.H., Lapides, I., Lahav, N., Yariv, S. and Brodsky, I. (1998) Infrared Study of the Intercalation of Kaolinite by Caesium Bromide and Caesium Iodide. Journal of Colloid and Interface Science, 204, 389-393.
http://dx.doi.org/10.1006/jcis.1998.5577
[15] Ben Haj Amara, A., Ben Brahim, J., Besson, G. and Pons, C.H. (1995) Study of Intercalated Nacrite with Dimethylsufoxide and n-Methylacetamide. Clay Minerals, 30, 295-306.
http://dx.doi.org/10.1180/claymin.1995.030.4.03
[16] Ben Haj Amara, A., Ben Rhaiem, H. and Plancon, A. (2000) Structural Evolution of Nacrite as a Function of the Nature of the Intercalated Organic Molecules. Journal of Applied Crystallography, 33, 1351-1359.
http://dx.doi.org/10.1107/S0021889800011730
[17] Naamen, S., Ben Rhaiem, H. and Ben Haj Amara, A. (2004) XRD Study of the Nacrite/CsCl/H2O Intercalation Complex. Materials Science Forum, 443-444, 59-64.
[18] Jaafar, N., Ben Rhaiem, H. and Ben Haj Amara, A. (2014) Synthesis, Characterization and Applications of a New Nanohybrid Composite: Nacrite/MgCl2·6H2O/Ethanol. International Conference on Composite Materials & Renewable Energy Applications (ICCMREA), IEEE Xplore Digital Library, Sousse, 22-24 January 2014, 1-6.
[19] Ben Haj Amara, A., Plancon, A., Ben Brahim, J. and Ben Rhaiem, H. (1998) XRD Study of the Stacking Mode in Natural and Hydrated Nacrite. Materials Science Forum, 278-281, 809-813.
http://dx.doi.org/10.4028/www.scientific.net/MSF.278-281.809
[20] Michaelian, K.H., Yariv, S. and Nasser, A. (1991) Study of the Interactions between Caesium Bromide and Kaolinite by Photoacoustic and Diffuse Reflectance Infrared Spectroscopy. Canadian Journal of Chemistry, 69, 749-754.
http://dx.doi.org/10.1139/v91-110
[21] Lapides, I., Lahav, N., Michaelian, K.H. and Yariv, S. (1997) X-Ray Study of the Thermal Intercalation of Alkali Halides into Kaolinite. Journal of Thermal Analysis, 49, 1423-1432.
http://dx.doi.org/10.1007/BF01983701
[22] Cruz, M., Jacobs, H. and Fripiat, J.J. (1973) Interlayer Bonding in Kaolin Minerals. Proceedings of the International Clay Conference, 1972, CSIC, Madrid: Division de Ciencias, Madrid, Spain, 35-46.
[23] Ben Haj Amara, A. (1997) X-Ray Diffraction, Infrared and TGA/DTG Analysis of Hydrated Nacrite. Clay Minerals, 32, 463-470.
http://dx.doi.org/10.1180/claymin.1997.032.3.08
[24] Ben Haj Amara, A., Ben Brahim, J., Ben Ayed, N. and Ben Rhaiem, H. (1996) Occurence of Nacrite in Old Pb-Zn Deposits from Northern Tunisia. Clay Minerals, 31, 127-130.
http://dx.doi.org/10.1180/claymin.1996.031.1.11
[25] Ben Haj Amara, A., Ben Brahim, J., Plancon, A. and Ben Rhaiem, H. (1998) X-Ray Diffraction Study of the Stacking Modes of Hydrated and Dehydrated Nacrite. Journal of Applied Crystallography, 31, 654-662.
http://dx.doi.org/10.1107/S0021889898000363
[26] Weiss, A., Thielepape, W. and Orth, H. (1966) Neue Kaolinit-Einlagerungsverbindungen. In: Rosenquist, T. and Graff-Petterson, P., Eds., Proceedings of the International Clay Conference, Israel University Press, Jerusalem, Vol. 1, 277-293.
[27] Garrett, W.G. and Walker, G.F. (1959) The Cation-Exchange Capacity of Hydrated Halloysite and the Formation of Halloysite-Salt Complexes. Clay Minerals, 4, 75-80.
http://dx.doi.org/10.1180/claymin.1959.004.22.02
[28] Wiewióra, A. and Brindley, G.W. (1969) Potassium Acetate Intercalation in Kaolinites and Its Removal: Effect of Material Characteristics. Proceedings of the International Clay Conference, L .Heller, Ed., Israel University Press, Jerusalem, Vol. 1, 723-733.
[29] Bailey, S.W. (1982) Nomenclature for Regular Interstratifications. Clay Minerals, 17, 243-248.
http://dx.doi.org/10.1180/claymin.1982.017.2.09
[30] Drits, V.A. and Tchoubar, C. (1990) The Modelization Method in the Determination of the Structural Characteristics of Some Layer Silicates: Internal Structure of the Layers, Nature and Distribution of Stacking Faults. In: X-Ray Diffraction by Disordered Lamellar Structures, Springer-Verlag, Berlin, 233-303.
[31] Ben Rhaiem, H., Tessier, D. and Ben Haj Amara, A. (2000) Mineralogy of the <2 μm Fraction of Three Mixed-Layer Clays from Southern and Central Tunisia. Clay Minerals, 35, 375-381.
http://dx.doi.org/10.1180/000985500546846
[32] Howard, S.A. and Preston, K.D. (1989) Profile Fitting of Powder Diffraction Patterns. In: Bish, D.L. and Post, J.E., Eds., Modern Powder Diffraction: Reviews in Mineralogy, Mineralogical Society of America, Washington DC, 217-275.
[33] Taser, M., Kucukcelebi, H., Armagan, N. and Güler, C. (1997) Use of R Factors in the Study of the Structural Defects in Phyllosilicates by X-Ray Powder Diffraction. Journal of Applied Crystallography, 30, 55-58.
http://dx.doi.org/10.1107/S0021889896008916
[34] Plancon, A. (1981) Diffraction by Layer Containing Different Kinds of Layers and Stacking Faults. Journal of Applied Crystallography, 14, 300-304.
http://dx.doi.org/10.1107/S0021889881009424
[35] Cheng, H., Liua, Q., Yang, J., Ma, S. and Frost, R.L. (2012) The Thermal Behavior of Kaolinite Intercalation Complexes—A Review. Thermochimica Acta, 545, 1-13.
http://dx.doi.org/10.1016/j.tca.2012.04.005
[36] Naamen, S., Ben Rhaiem, H., Karmous, M.S. and Ben Haj Amara, A. (2004) XRD Study of the Stacking Mode of the Nacrite/Alkali Halides Complexes. Materials Structure, 11.
[37] Leluk, K., Orzechowski, K., Jerieb, K., Baranowskib, A., Slonkac, T. and Glowinskic, J. (2010) Dielectric Permittivity of Kaolinite Heated to High Temperatures. Journal of Physics and Chemistry of Solids, 71, 827-831.
http://dx.doi.org/10.1016/j.jpcs.2010.02.008
[38] Heller-Kallai, L. (1978) Reactions of Salts with Kaolinite at Elevated Temperatures. Clay Minerals, 13, 221-235.
http://dx.doi.org/10.1180/claymin.1978.013.2.09
[39] Gabor, M., Poeppl, L. and Koeros, E. (1986) Effect of Ambient Atmosphere on Solid State Reaction of Kaolin-Salt Mixtures. Clays and Clay Minerals, 34, 529-533.
http://dx.doi.org/10.1346/CCMN.1986.0340505
[40] Frost, R.L., Kristof, J., Mako, E. and Kloprogge, J.T. (2000) Modification of the Hydroxyl Surface in Potassium-Acetate-Intercalated Kaolinite between 25 and 300°C. Langmuir, 16, 7421-7428.
http://dx.doi.org/10.1021/la9915318
[41] Yariv, S. (1986) Interactions of Minerals of the Kaolin Group with Cesium Chloride and Deuteration of the Complexes. International Journal of Tropical Agricultural, 5, 310-322.
[42] Michaelian, K.H., Friesen, W.I., Yariv, S. and Nasser, A. (1991) Diffuse Reflectance Infrared Spectra of Kaolinite and Kaolinite/Alkali Halide Mixtures. Curve-Fitting of the OH Stretching Region. Canadian Journal of Chemistry, 69, 1786-1790.
http://dx.doi.org/10.1139/v91-262                                                                           eww150202lx

Crystal Structure of BaxSr1-xTiO3 Fine Powder

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53589#.VMnhiCzQrzE

ABSTRACT

Various compositions of the system BaxSr1-xTiO3 (BST) have been elaborated both as fine powders and ceramic monoliths, using the co-precipitation route within a warmed supersaturated solution of oxalic acid. The appropriate stoichiometry was determined from the mixtures of precisely titrated aqueous solutions of cations chlorides (SrCl2, BaCl2, and TiCl4). The reason of this process was to apply low sintering temperature in production of BST samples with ultra-fine powders. These powders primarily calcined at (850°C) for (5 hr) were used to elaborate ceramics after pellets sintering at (1200°C) during (8 hrs). Indeed, XRD patterns were confirmed that the samples are a pure phase and a perovskite cubic structural type at (x = 0, 0.5, 0.6). Whereas, (x = 0.7, 0.8, 0.9, 1) showed a tetragonal phase. There is agreement between the FTIR and XRD analysis, by the relation of the wave vector (K) and lattice constant. It was deduced a stimulated relation between (x) and (K). The results of TEM, they were clear that the lowest particle sizes investigated of BST powders nearly (36 – 50 nm).

Cite this paper

Mahmood, N. , Al-Shakarchi, E. , Elouadi, B. and Feaugas, X. (2015) Crystal Structure of BaxSr1-xTiO3 Fine Powder. Journal of Modern Physics, 6, 70-77. doi: 10.4236/jmp.2015.61009.

References

[1] Kao, K. (2004) Dielectric Phenomena in Solids. Elsevier Academic Press, San Diego.
[2] Mantese, J. and Alpay, S. (2005) Graded Ferroelectrics, Transpacitors and Transponent. Ch. 2, Springer, USA.
[3] Muller, K.A. and Kool, T.W., Eds. (2010) Properties of Perovskites and Other Oxides. World Scientific Publishing Co. Pte. Ltd., USA.
[4] Hung, K.M., Yang, W.D. and Huang, C. (2003) Journal of the European Ceramic Society, 23, 1901-1910.
http://dx.doi.org/10.1016/S0955-2219(02)00431-4
[5] Sharma, P.K., Varadan, V.V. and Varadan V.K. (2003) Journal of the European Ceramic Society, 23, 659-666.
http://dx.doi.org/10.1016/S0955-2219(02)00191-7
[6] Razak, K.A., Asadov, A., Yoo, J., Haemmerle, E. and Gao, W. (2008) Journal of Alloys and Compounds, 449, 19-23.
http://dx.doi.org/10.1016/j.jallcom.2006.02.093
[7] Brankovic, G., Brankovic, Z., Goes, M.S., Paiva, C.O., Cilense, M., Varela, J.A. and Longo, E. (2005) Materials Science and Engineering: B, 122, 140-144.
http://dx.doi.org/10.1016/j.mseb.2005.05.016
[8] Hwu, J., Yu, W., Yang, W., Chen, Y. and Chou, Y. (2005) Materials Research Bulletin, 40, 1662-1679.
http://dx.doi.org/10.1016/j.materresbull.2005.05.019
[9] Kim, S., Lee, M., Noh, T. and Lee, C. (1996) Journal of Materials Science, 31, 3643-3645.
http://dx.doi.org/10.1007/BF00352772
[10] Mahmood, N.B. and Al-Shakarchi, E.K. (2011) Journal of Modern Physics, 2, 1420-1428.
http://dx.doi.org/10.4236/jmp.2011.211175
[11] Khollam, Y.B., Deshpande, S.B., Potdar, H.S., Bhoraskar, S.V., Sainkar, S.R. and Date, S.K. (2005) Materials Characterization, 54, 63-74.
http://dx.doi.org/10.1016/j.matchar.2004.11.002
[12] Jhung, S., Lee, J., Yoon, J., Hwang, Y., Hwang, Y., Park, S. and Chang, J. (2004) Materials Letters, 58, 3161-3165.
http://dx.doi.org/10.1016/j.matlet.2004.06.006
[13] Simon-Seveyrat, L., Hajjaji, A., Emziane, Y., Guiffard, B. and Guyomar, D. (2007) Ceramics International, 3, 35-40.
http://dx.doi.org/10.1016/j.ceramint.2005.07.019
[14] Khollam, Y., Bhoraskar, S., Deshpande, S., Potdar, H., Pavaskar, N., Sainkar, S. and Date, S. (2003) Materials Letters, 57, 1871-1879.
http://dx.doi.org/10.1016/S0167-577X(02)01091-1
[15] Hahn, T. (2005) International Tables for Crystallography. Volume A: Space-Group Symmetry. Springer, New York.
[16] Kao, C.F. and Yang, W.D. (1999) Applied Organometallic Chemistry, 13, 383-397.
http://dx.doi.org/10.1002/(SICI)1099-0739(199905)13:5<383::AID-
AOC836>3.0.CO;2-P
[17] Verma, K., Sharma, S., Sharma, D.K., Kumar, R. and Rai, R. (2012) Advanced Materials Letters, 3, 44-49.
http://dx.doi.org/10.5185/amlett.2011.5264                 eww150129lx

Extensive Studies on X-Ray Diffraction of Green Synthesized Silver Nanoparticles

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=53545#.VMiF5yzQrzE

ABSTRACT

Silver nanoparticle preparation and X-ray diffraction studies are reported in this paper. Metallic nanoparticles are traditionally synthesized by wet chemical techniques, where the chemicals used are quite often toxic and flammable. This paper deals with a cost effective and environment friendly technique for green synthesis of silver nanoparticles from silver nitrate solution by co-precipitation using the leaf extract of different species of Ocimum which acts as reducing and capping agent. The important ingredients responsible for the formation of silver nanoparticles present in the leaf extract are triterpenes, flavonoids and eugenol. Wide range of experimental conditions has been adopted in this process and its X-ray diffraction characterizations have been studied. The average crystalline size was 12 nm. The particle size and strain which were calculated using Williamson- Hall equation were 12.3 and 0.3688 respectively. The dislocation density was 7.9 × 1014m-2.

Cite this paper

Bykkam, S. , Ahmadipour, M. , Narisngam, S. , Kalagadda, V. and Chidurala, S. (2015) Extensive Studies on X-Ray Diffraction of Green Synthesized Silver Nanoparticles. Advances in Nanoparticles, 4, 1-10. doi: 10.4236/anp.2015.41001.

References

[1] Nath, S.S., Chakdar, D., Gope, G. and Avasthi, D.K. (2008) Characterizations of CdS and ZnS Quantum Dots Prepared by Chemical Method on SBR Latex. Journal of Nanotechnology Online, 4, 1-6.
http://dx.doi.org/10.2240/azojono0128
[2] Cao, G. (2004) Nanostructures and Nanomaterials: Synthesis, Properties and Applications. Imperial College Press, London.
[3] Ahmadipour, M., Venkateswara Rao, K. and Rajendar, V. (2012) Formation of Nanoscale Mg(x) Fe(1-x) O (x = 0.1, 0.2, 0.4) Structure by Solution Combustion: Effect of Fuel to Oxidizer Ratio. Journal of Nanomaterials, 2012, 8 p.
http://dx.doi.org/10.1155/2012/163909
[4] Wang, X., Zhuang, J., Peng, Q. and Li, Y. (2004) A General Strategy for Nanocrytsal Synthesis, Nature, 437, 121-124.
http://dx.doi.org/10.1038/nature03968
[5] Bo, X. and Kevan, L. (1991) Formation of Silver Ionic Clusters and Silver Metal Particles in Zeolite Rho Studied by Electron Spin Resonance and Far-Infrared Spectroscopies. Journal of Physical Chemistry B, 95, 1147-1151.
http://dx.doi.org/10.1021/j100156a023
[6] Foss, C.A., Tierney, M.J. and Martin, C.R. (1992) Template Synthesis of Infrared-Transparent Metal Microcylinders: Comparison of Optical Properties with the Predictions of Effective Medium Theory. Journal of Physical Chemistry B, 96, 9001-9007. http://dx.doi.org/10.1021/j100201a057
[7] Foss, C.A., Hornyak, G.L., Stockert, J.A. and Martin, C.R. (1994) Template-Synthesized Nanoscopic Gold Particles: Optical Spectra and the Effects of Particle Size and Shape. Journal of Physical Chemistry B, 98, 2963-2971.
http://dx.doi.org/10.1021/j100062a037
[8] Bo, X. and Kevan, L. (1992) Formation of Alkali Metal Partides in Alkali Metal Cation Exchanged X Zeollte Exposed to Atka Metat Vapor: Control of Metat Particle Identity. Journal of Physical Chemistry B, 96, 2642-2645.
http://dx.doi.org/10.1021/j100185a046
[9] Cullity, B.D. (1978) Elements of X-Ray Diffraction. Addison-Wesley Publication Company, Boston.
[10] Lanje, A.S., Sharma, S.J. and Pode, R.B. (2010) Synthesis of Silver Nanoparticles: A Safer Alternative to Conventional Antimicrobial and Antibacterial Agents. Journal of Chemical and Pharmaceutical Research, 2, 478-483.
[11] Das, R., Nath, S.S., Chakdar, D., Gope, G. and Bhattacharjee, R. (2009) Preparation of Silver Nanoparticles and Their Characterization. Journal of Nanotechnology Online, 5, 1-6.
[12] Sun, Y.G. and Xia, Y.N. (2002) Shape-Controlled Synthesis of Gold and Silver Nanoparticles. Science, 298, 2176- 2179. http://dx.doi.org/10.1126/science.1077229
[13] Nath, S.S., Chakdar, D. and Gope, G. (2007) Synthesis of CdS and ZnS Quantum Dots and Their Applications in Electronics. Nanotrends—A Journal of Nanotechnology and Its Application, 2, 3.
[14] Nath S.S., Chakdar, D., Gope, G. and Avasthi, D.K. (2008) Effect of 100 Mev Nickel Inos on Silica Coated ZnS Quantum Dot. Journal of Nanoelectronics and Optoelectronics, 3, 1-4.
http://dx.doi.org/10.1166/jno.2008.212
[15] Hall, B.D., Zanchet, D. and Ugarte, D. (2000) Estimating Nanoparticle Size from Diffraction Measurements. Journal of Applied Crystallography, 33, 1335-1341.
http://dx.doi.org/10.1107/S0021889800010888
[16] Branauer, S., Emmeteof, P.H. and Teller, E. (1938) Adsorption of Gases in Multimolecular Layers. Journal of the American Chemical Society, 60, 309-319. http://dx.doi.org/10.1021/ja01269a023
[17] Park, J.-Y., Lee, Y.-J., Jun, K.-W., Baeg, J.-O. and Yim, D.J. (2006) Chemical Synthesis and Characterization of Highly Oil Dispersed MgO Nanoparticles. Journal of Industrial and Engineering Chemistry, 12, 882-887.
[18] Majeed Khan, M.A., Kumar, S., Ahamed, M., Alrokayan, S.A. and AlSalhi, M.S. (2011) Structural and Thermal Studies of Silver Nanoparticles and Electrical Transport Study of Their Thin Films. Nanoscale Research Letters, 6, 434.
http://dx.doi.org/10.1186/1556-276X-6-434
[19] Venkata Subbaiah, Y.P., Prathap, P. and Ramakrishna Reddy, K.T. (2006) Structural, Electrical and Optical Properties of ZnS Films Deposited by Close-Spaced Evaporation. Applied Surface Science, 253, 2409-2415.
http://dx.doi.org/10.1016/j.apsusc.2006.04.063                                                            eww150128lx

Structural, Microstructral, Mechanical and Magnetic Characterization of Ball Milled Tungsten Heavy Alloys

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=52151#.VIZKz2fHRK0

ABSTRACT

A homemade ball mill was constructed and optimized in order to prepare nano crystallite size of tungsten heavy alloys, with composition of 90W-7Ni-3Fe and 90W-7Ni-3Co in wt%. The samples were mechanically alloyed under high purity of argon atmosphere and were sintered under high vacuumat 1200°C, 1300°C and 1400°C. X-ray diffraction (XRD), Transmission Electron Microscope (TEM), Scanning Electron Microscope (SEM), Energy Dispersive X-ray (EDX), Vickers, ultrasonic techniques and SQUID magnetometer were all used to characterize the studied samples. The sintering temperature and the milling time at which the heavy tungsten alloys were obtained, are discussed in details. The results showed that the tungsten heavy alloys were synthesized and sintered at lower temperature than those prepared by the conventional techniques. Moreover, the strains and relative densities increased with milling time up to 100 hrs; then decreased with further milling. On the other hand, the elastic moduli and hardness increased with milling time up to 200 hrs; then decreased with further milling. The hardness calculated from ultrasonic and measured from Vickers exhibited a similar trend though with different values. The saturated magnetization decreased by increasing the milling time and decreasing the crystallite size.

Cite this paper

Elshimy, H. , Heiba, Z. and El-Sayed, K. (2014) Structural, Microstructral, Mechanical and Magnetic Characterization of Ball Milled Tungsten Heavy Alloys. Advances in Materials Physics and Chemistry, 4, 237-257. doi: 10.4236/ampc.2014.412027.

References

[1] Upadhyaya, A. (2001) Processing Strategy for Consolidating Tungsten Heavy Alloys for Ordnance Applications. Materials Chemistry and Physics, 67, 101-110.
http://dx.doi.org/10.1016/S0254-0584(00)00426-0
[2] Ma, Y., Huang, B. and Liu, W. (2005) Status and Development of Tungsten-Based Alloy Research. The Powder Metallurgy Industry, 15, 46-54.
[3] Fan, J., Huang, B. and Qu, X. (2000) W-Ni-Fe Nanostructure Materials Synthesized by High Energy Ball Milling. Transactions of Nonferrous Metals Society of China, 10, 57-59.
[4] Ryu, H.J., Hong, S.H. and Baek, W.H. (1997) Mechanical Alloying Process of 93W-5.6Ni-1.4Fe Tungsten Heavy Alloy. Journal of Materials Processing Technology, 63, 292-297.
http://dx.doi.org/10.1016/S0924-0136(96)02638-6
[5] Cai, W.D., Li, Y., Dowding, R.J., Mohamed, F.A. and Lavernia, E.J. (1995) A Review of Tungsten-Based Alloys as Kinetic Energy Penetrator Materials. Reviews in Particulate Materials, 3, 71-131.
[6] Zhang, Z.W., Zhou, J.E., Xi, S.Q., Ran, G. and Li, P.L. (2004) Phase Transformation and Thermal Stability of Mechanically Alloyed W-Ni-Fe Composite Materials. Materials Science and Engineering: A, 379, 148-153.
http://dx.doi.org/10.1016/j.msea.2004.02.039
[7] Song, H., Kim, S. and Lee, E.P. (2008) From Advanced Materials. Manufacturing and Testing Information Analysis Center, 3.
[8] Bose, A. and Dowding, R.J. (1997) Tungsten, Refractory Metals and Alloys 4: Processing, Properties and Applications. Proceedings of the 4th International Conference on Tungsten and Refractory Metals and Alloys, Florida, 17-19 November 1997, 17-19.
[9] Rabin, B.H., Bose, A. and German, R.M. (1989) Characteristics of Liquid Phase Sintered Tungsten Heavy Alloys. International Journal of Powder Metallurgy, 25, 21-26.
[10] German, R.M. and Bourguignon, L.L. (1984) Analysis of High Tungsten Content Heavy Alloys. Powder Metallurgy in Defense Technology, 6, 117-131.
[11] Katavik, B. and Nikacevic, M. (2005) Properties of the Cold Swaged and Strain Aged P/M 91W-6Ni-3Co Heavy Alloy. 2nd International Conference on Deformation Processing and Structure of Materials, Belgrade, Serbia and Montenegro, 26-28 May 2005, 135-140.
[12] Hong, S.H., Ryu, H.J. and Baek, W.H. (2002) Matrix Pools in a Partially Mechanically Alloyed Tungsten Heavy Alloy for Localized Shear Deformation. Materials Science and Engineering: A, 333, 187-192.
http://dx.doi.org/10.1016/S0921-5093(01)01839-1
[13] Mondala, A., Upadhyayaa, A. and Agrawalb, D. (2010) Effect of Heating Mode on Sintering of Tungsten. International Journal of Refractory Metals and Hard Materials, 28, 597-600.
http://dx.doi.org/10.1016/j.ijrmhm.2010.05.002
[14] Benjamin, J.S. (1976) Mechanical Alloying. Scientific American, 234, 40-49.
http://dx.doi.org/10.1038/scientificamerican0576-40
[15] Carvalho, P.A., Fonseca, I., Marques, M.T., Correia, J.B., Almeida, A. and Vilar, R. (2005) Characterization of Copper-Cementite Nanocomposite Produced via Mechanical Alloying. Acta Materialia, 53, 967-976.
http://dx.doi.org/10.1016/j.actamat.2004.10.042
[16] Krasnowski, M. and Kulik, T. (2008) Nanocomposites Obtained by Mechanical Alloying in Fe-Al-Ti-C System. Journal of Alloys and Compounds, 448, 227-233.
http://dx.doi.org/10.1016/j.jallcom.2007.01.013
[17] Lutterotti, L., Scardi, P. and Maistrelli, P. (1992) LSI—A Computer Program for Simultaneous Refinement of Material Structure and Microstructure. Journal of Applied Crystallography, 25, 459-462.
http://dx.doi.org/10.1107/S0021889892001122
[18] Lutterotti, L. (2002) MAUD Version 1.85.
http://www.ing.unitn.it/~luttero/maud
[19] Perepechko, I. (1975) Acoustic Method of Investigating Polymers. English Translation, Mir Publishers, Moscow.
[20] Afifi, H. and Marzouk, S. (2003) Ultrasonic Velocity and Elastic Moduli of Heavy Metal Tellurite Glasses. Materials Chemistry and Physics, 80, 517-523.
http://dx.doi.org/10.1016/S0254-0584(03)00099-3
[21] Suryanarayana, C. (2001) Mechanical Alloying and Milling. Progress in Materials Science, 46, 1-184.
[22] Dutta, H., Pradhan, S.K. and De, M. (2002) Microstructural Evolution on Ball-Milling Elemental Blends of Ni, Al and Ti by Rietveld’s Method. Materials Chemistry and Physics, 74, 167-176.
http://dx.doi.org/10.1016/S0254-0584(01)00471-0
[23] Fahlman, B.D. (2007) Material Chemistry.
http://dx.doi.org/10.1007/978-1-4020-6120-2
[24] Groza, J.R. and Dowding, R.J. (1996) Nanoparticulate Materials Densification. Nanostructured Materials, 7, 749-768.
http://dx.doi.org/10.1016/S0965-9773(96)00046-3
[25] Hewitt, S.A. and Kibble, K.A. (2009) Effects of Ball Milling Time on the Synthesis and Consolidation of Nanostructured WC-Co Composites. International Journal of Refractory Metals and Hard Materials, 27, 937-948.
http://dx.doi.org/10.1016/j.ijrmhm.2009.05.006
[26] Hamidi, A.G., Arabi, H. and Rastegari, S. (2011) A Feasibility Study of W-Cu Composites Production by High Pressure Compression of Tungsten Powder. International Journal of Refractory Metals and Hard Materials, 29, 123-127.
http://dx.doi.org/10.1016/j.ijrmhm.2010.09.002
[27] Yusoff, M., Othman, R. and Hussain, Z. (2011) Mechanical Alloying and Sintering of Nanostructured Tungsten Carbide-Reinforced Copper Composite and its Characterization. Materials and Design, 32, 3293-3298.
http://dx.doi.org/10.1016/j.matdes.2011.02.025
[28] German, R.M. (1986) The Effect of the Binder Phase Melting Temperature on Enhanced Sintering. Metallurgical Transactions A, 17, 903-906.
http://dx.doi.org/10.1007/BF02643868
[29] Jang, J.S.C., Fwu, J.C., Chang, L.J., Chen, G.J. and Hsu, C.T. (2007) Study on the Solid-Phase Sintering of the Nano-Structured Heavy Tungsten Alloy Powder. Journal of Alloys and Compounds, 434-435, 367-370.
http://dx.doi.org/10.1016/j.jallcom.2006.08.215
[30] Goya, G.F., Berquo, T.S., Fonseca, F.C. and Morales, M.P. (2003) Static and Dynamic Magnetic Properties of Spherical Magnetite Nanoparticles. Journal of Applied Physics, 94, 3520-3528.
http://dx.doi.org/10.1063/1.1599959
[31] Lin, C.R., Chu, Y.M. and Wang, S.C. (2006) Magnetic Properties of Nanosized Sr2CrReO6 Powders Prepared by a Combustion Synthesis Process. Materials Letters, 60, 2270-2273.
http://dx.doi.org/10.1016/j.matlet.2005.12.124                                                                      eww141209lx

1-D Paracrystalline Model to Simulate a Bragg Reflection: Computation of Crystallite Size and Lattice Strain

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=47510#.VFg5PmfHRK0

Author(s)

  1. B. Nanda Prakash, G. Thejas Urs, H. T. Ananda, R. Somashekar

Affiliation(s)

Department of Studies in Physics, University of Mysore, Mysore, India.
Department of Studies in Physics, University of Mysore, Mysore, India.
Department of Physics, Government College (Autonomus), Mandya, India.
Department of Studies in Physics, University of Mysore, Mysore, India.

ABSTRACT

A simple and elegant method to simulate single order reflection profile based on 1-D paracrystalline model has been proposed here. For variety of polymer films this approach has been applied to compute microcrystalline parameters like crystallite size and lattice strain. Other metallic oxide compounds are also analysed using this approach. Employing this model, X-ray diffraction patterns from various polymer samples have been analysed and corresponding microstructure parameters have been reported in this article.

KEYWORDS

X-Ray Diffraction, Paracrystal, Simulation

Cite this paper

Prakash, M. , Urs, G. , Ananda, H. and Somashekar, R. (2014) 1-D Paracrystalline Model to Simulate a Bragg Reflection: Computation of Crystallite Size and Lattice Strain. Crystal Structure Theory and Applications, 3, 48-55. doi: 10.4236/csta.2014.32006.

References

[1] Zernike, F. and Prins, J.A. (1927) Die Beugung von Rontgenstrahlen in Flussigkeiten als Effekt der Molekulanordnung. Zeitschrift fur Physik, 41, 184-194.
http://dx.doi.org/10.1007/BF01391926
[2] Warren, B.E. (1969) X-Ray Diffraction. Addison-Wesley, Reading.
[3] Hosemann, R. and Bagchi, S.N. (1962) Direct Analysis of Diffraction by Matter. North-Holland, Amsterdam.
[4] Hall, I.H. and Somashekar, R. (1991) The Determination of Crystal Size and Disorder from the X-Ray Diffraction Photograph of Polymer Fibres. 2. Modelling Intensity Profiles. Journal of Applied Crystallography, 24, 1051.
http://dx.doi.org/10.1107/S0021889891007707
[5] Balzar, D. (1993) X-Ray Diffraction Line Broadening: Modeling and Applications to High-Tc Superconductors. Journal of Research of the National Institute of Standards and Technology, 98, 321.
http://dx.doi.org/10.6028/jres.098.026
[6] Delhez, R., de Keijser, Th.H., Langford, J.L., Louer, D., Mittemeijer, E.J. and Sonneveld, E.J. (1993)
[7] Langford, J.I. and Lour, D. (1982) Diffraction Line Profiles and Scherrer Constants for Materials with Cylindrical Crystallites. Journal of Applied Crystallography, 15, 20-26.
http://dx.doi.org/10.1107/S0021889882011297
[8] Scardi, P. and Leoni, M. (2002) Whole Powder Pattern Modeling. Acta Crystallographica Section A. Foundations of Crystallography, 58, 190-200.
http://dx.doi.org/10.1107/S0108767301021298
[9] Nandi, R.K., Kuo, H.K., Schlosberg, W., Wissler, G., Cohen, J.B. and Crist Jr., B. (1984) Single-Peak Methods for Fourier Analysis of Peak Shapes. Journal of Applied Crystallography, 17, 22-26.
http://dx.doi.org/10.1107/S0021889878012662
[10] Klug, H.P. and Alexander, L.E. (1974) X-Ray Diffraction Procedures for Polycrystalline and Amorphous Materials. 2nd Edition, Wiley, New York.
[11] Kuzel Jr., R. and Klimanek, P. (1989) X-Ray Diffraction Line Broadening Due to Dislocations in Non-Cubic Crystalline Materials. III. Experimental Results for Plastically Deformed Zirconium. Journal of Applied Crystallography, 22, 299-307.
http://dx.doi.org/10.1107/S0021889889001585
[12] Rietveld, H.M. (1969) A Profile Refinement Method for Nuclear and Magnetic Structures. Journal of Applied Crystallography, 2, 65-71.
http://dx.doi.org/10.1107/S0021889869006558
[13] Young, R.A. (1995) The Rietveld Method. Oxford University Press, Oxford, 132-166.
[14] Ungar, T., Gubicza, J., Ribarik, G. and Borbely, A. (2001) Crystallite Size Distribution and Dislocation Structure Determined by Diffraction Profile Analysis: Principles and Practical Application to Cubic and Hexagonal Crystals. Journal of Applied Crystallography, 34, 298-310.
http://dx.doi.org/10.1107/S0021889801003715
[15] Snyder, R.J., Fiala, J. and Bunge, H.J. (1999) Defect and Microstructure Analysis by Diffraction. Oxford University Press, Oxford.
[16] Somashekar, R., Hall, I.H. and Carr, P.D. (1989) The Determination of Crystal Size and Disorder from X-Ray Diffraction Photographs of Polymer Fibres. 1. The Accuracy of Determination of Fourier Coefficients of the Intensity Profile of a Reflection. Journal of Applied Crystallography, 22, 363-371.
http://dx.doi.org/10.1107/S0021889889004085
[17] Lee, K.G., Barton, R. and Schultz, J.M. (1995) Structure and Property Development in Poly(P-Phenylene Terephthalamide) during Heat Treatment under Tension. Journal of Polymer Science Part B: Polymer Physics, 33, 1-14.
http://dx.doi.org/10.1002/polb.1995.090330101
[18] Somashekar, R. and Somashekarappa, H. (1997) X-Ray Diffraction-Line Broadening Analysis: Paracrystalline Method. Journal of Applied Crystallography, 30, 147-152.
http://dx.doi.org/10.1107/S0021889896010023
[19] Balzar, D., Audebrand, N., Daymond, M.R., Fitch, A., Hewat, A., Langford, J.I., Le Bail, A., Lour, D., Masson, O., McCowan, C.N., Popa, N.C., Stephens, P.W. and Toby, B.H. (2004) Journal of Applied Crystallography, 37, 911-924.
http://dx.doi.org/10.1107/S0021889804022551
[20] Skoko, Z., Popovic, J., Dekanic, K., Kolbas, V. and Popovi, S. (2012) XBroad: Program for Extracting Basic Microstructure Information from X-Ray Diffraction Patterns in Few Clicks. Journal of Applied Crystallography, 45, 584-597.
http://dx.doi.org/10.1107/S0021889812014859
[21] Beyerlien, K.R., Snyder, R.L. and Scardi, P. (2011) Powder Diffraction Line Profiles from the Size and Shape of Nanocrystallites. Journal of Applied Crystallography, 44, 945-953.
http://dx.doi.org/10.1107/S0021889811030743
[22] Leonardi, A., Leoni, M., Siboni, S. and Scardi, P. (2012) Common Volume Functions and Diffraction Line Profiles of Polyhedral Domains. Journal of Applied Crystallography, 45, 1162-1172.
http://dx.doi.org/10.1107/S0021889812039283
[23] Stokes, A.R. (1948) A Numerical Fourier-Analysis Method for the Correction of Widths and Shapes of Lines on X-Ray Powder Photographs. Proceedings of the Physical Society, 61, 382-391.
http://dx.doi.org/10.1088/0959-5309/61/4/311
[24] Bhajantria, R.F., Ravindrachary, V., Harisha, A., Crasta, V., Nayak, S.P. and Poojary, B. (2006) Microstructural Studies on BaCl2 Doped Poly(Vinyl Alcohol). Polymer, 47, 3591-3598.
http://dx.doi.org/10.1016/j.polymer.2006.03.054
[25] Lakshmeesha Rao, B., Mahadevaiah, O., Sangappa, Y., Asha, S. and Somashekar, R. (2012) Microstructural Parameters in Electron Irradiated PVA Films by Wide Angle X-Ray Scattering Studies (WAXS). Advanced Materials Research, 585, 532-536.
http://dx.doi.org/10.4028/www.scientific.net/AMR.585.532
[26] Divakara, S., Siddaraju, G.N. and Somashekar, R. (2010) Comparative Study of Natural and Man-Made Polymers Using Whole Powder Pattern Fitting Technique. Fibres and Polymers, 11, 861-868.
http://dx.doi.org/10.1007/s12221-010-0861-7
[27] Sangappa, Demappa, T., Mahadevaiah, Ganesh, S., Divakara, S. and Somashekar, R. (2008) Microstructural Parameters in Electron-Irradiated Hydroxypropyl Methylcellulose Films Using X-Ray Line Profile Analysis. Journal of Applied Polymer Science, 109, 3983-3990.
http://dx.doi.org/10.1002/app.28495
[28] Divakara, S., Madhu, S. and Somashekar, R. (2009) Stacking Faults and Microstructural Parameters in Non-Mulberry Silk Fibres. Pramana, 73, 927-938.
http://dx.doi.org/10.1007/s12043-009-0159-8
[29] Divakara, S., Somashekar, R. and Roy, S. (2009) Correlation between Microstructure and Microrheological Parameters of Various Silk Fibres. Indian Journal of Fibre and Textile Research, 34, 168-174.
[30] Reddy, T., Roy, S., Prakash, Y., Somashekarappa, H., Ramesh, K., Divakara, S. and Somashekar, R. (2011) Stress-Strain Curves and Corresponding Structural Parameters in Mulberry and Non-Mulberry Silk Fibers. Fibers and Polymers, 12, 499-505.
http://dx.doi.org/10.1007/s12221-011-0499-0
[31] Niranjana, A.R., Divakara, S. and Somashekar, R. (2011) Characterization of Field Grown Cotton Fibres Using Whole Powder Pattern Fitting Method. Indian Journal of Fibre and Textile Research, 36, 9-17.
[32] Abhishek, S., Samir, O.M., Annadurai, V., Gopalkrishne Urs, R., Mahesh, S.S. and Somashekar, R. (2005) Role of Micro-Crystalline Parameters in the Physical Properties of Cotton Fibers. European Polymer Journal, 41, 2916-2922.
http://dx.doi.org/10.1016/j.eurpolymj.2005.06.005                                                                       eww141104lx

Chemical Durability and Structural Proprieties of the Vitreous Part of the System xCaO-(40-x)ZnO-15Na2O-45P2O5

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50650#.VEhRXFfHRK0

Author(s)

ABSTRACT

The influence of CaO on the glass forming characteristics and properties of Na2O-CaO-ZnO-P2O5 glasses has been investigated. According to the studies that we performed on phosphate based glass within system xCaO-(40-x)ZnO-15Na2O-45P2O5 (10 ≤ x ≤ 30; mol%), it was found that the increase of CaO and substitution of ZnO can give a good chemical durability. Both Cristallographies X-ray and IR spectroscopy have confirmed the structure change when the CaO content increases in the glass. This change results in the formation of metaphosphate and/or rings of metaphosphate groups at the expense of pyrophosphate. So it indicates the formation of Ca-O-P bonds in the network glass that replaces hydrated P-O-Na and P-O-P bands. The phosphate chains units can be bonded together in rings forming meta-phosphate groups. These rings likely lead to the formation of agglomerates of crystalline phases, which is the main cause of the increase in the chemical durability of the glasses when the CaO content increases. The latter may lead to wider use of these materials, especially in the biomedical field.

Cite this paper

Chabbou, Z. and Aqdim, S. (2014) Chemical Durability and Structural Proprieties of the Vitreous Part of the System xCaO-(40-x)ZnO-15Na2O-45P2O5. Advances in Materials Physics and Chemistry, 4, 179-186. doi: 10.4236/ampc.2014.410021.

References

[1] Tournié, A. (2009) Analyse raman sur site de verres et vitraux anciens: Modélisation, procedure, lixiviation et caractérisation. Doctoral Thesis, University Pierre et Marie Curie, Pairs.
[2] Vast, P. and Semmoud, A. (1994) Comportement thermique de difluorodioxophosphate ferreux. Journal of Thermal Analysis, 41, 1489-1493.
http://dx.doi.org/10.1007/BF02549945
[3] Moss, R.M., Abou Neel, E.A., Pickup, D.M., Twyman, H.L., Martin, R.A., Henson, M.D., Barney, E.R., Hannon, A.C., Knowles, J.C. and Newport, R.J. (2010) The Effect of Zinc and Titanium on the Structure of Calcium-Sodium Phosphate Based Glass. Journal of Non-Crystalline Solids, 356, 1319-1324.
http://dx.doi.org/10.1016/j.jnoncrysol.2010.03.006
[4] Lao, J. (2007) Caractérisation par micro-faisceau d’ions des relations physic-chimique induite in Vitro par des verres biosctifs nanostructures élaborés par la methode sol-gel. Doctoral Thesis, University Blaise Pascal, Clermont-Ferrand.
[5] Brow, R.K. (2000) The Structure of Simple Glass. Journal of Non-Crystalline Solids, 263 & 264, 1.
[6] Sales, B.C. and Batner, L.A. (1984) Lead-Iron Phosphate Glass: A Stable Storage Medium for High-Level Nucleaire Wastes. Science, 226, 45-48.
http://dx.doi.org/10.1126/science.226.4670.45
[7] Thonglem, S., Eitssayaem, S., Rujijanagul, G., Tunkasiri, T., Pengpat, K. and Munpakdee, A. (2012) Fabrication of P2O5-CaO-Na2O Glasses Doped with Zinc Oxide for Artificial Bone Application. Advance Material Research, 506, 509-512.
http://dx.doi.org/10.4028/www.scientific.net/AMR.506.509
[8] Dietrich, E. (2008) Synthèse et étude physoco-chimique des verres bioactifs denses et poreux: Application ne tant que biomatériaux en site osseux. Doctoral Thesis, University Rennes 1, Rennes.
[9] Vast, P. (1993) Bonding between Metals and Multi-Component Phosphate Based Ceramic Glass: Application to Enamelling of Nickel Titanium. Journal Physique IV France, 3, C7-1383-C7-1388.
[10] Soulié, J. (2011) Synthèse par voie sol-gel et reactivité in vitro de verre bioactifs dopes, mésostructurés, Caractérisation par micro-faisceaux, d’ions. Doctoral Thesis, Univesity Clermont II Blaise Pascal, Clermont-Ferrand.
[11] Ahmed, I., Lewis, M., Olsen, I. and Knowles, J.C. (2004) Phosphate Glasses for Tissue Engineering: Part 2. Processing and Characterisation of a Ternary-Based P2O5-CaO-Na2O Glass Fibre System. Biomaterials, 25, 501-507.
http://dx.doi.org/10.1016/S0142-9612(03)00547-7
[12] Aqdim, S., Sayouty, E.H. and Elouadi, B. (2008) Structural and Durability Investigation of the Vitreous Part of the System (35-z)Na2O-zFe2O3-5Al2O3-60P2O5. Eurasian Chemico-Technological Journal, 10, 9-17.
[13] Cai, S., Zhang, W.J., Xu, G.H., Li, J.Y., Wang, D.M. and Jiang, W. (2009) Microstructural Characteristics and Crystallisation of CaO-P2O5-Na2O-ZnO Glass Ceramics Prepared by Sol-Gel Method. Journal of Non-Crystalline Solids, 355, 273-279.
http://dx.doi.org/10.1016/j.jnoncrysol.2008.11.008
[14] Aqdim, S. and Ouchetto, M. (2013) Elaboration and Structural Investigation of Iron (III) Phosphate Glasses. Advances in Materials Physics and Chemistry, 3, 332-339.
http://dx.doi.org/10.4236/ampc.2013.38046
[15] Aqdim, S., Sayouty, E.H., Elouadi, B. and Greneche, J.M. (2012) IOP Conference Series: Materials Science and Engineering. 27, 012003.
[16] Ahmed, I., Lewis, M., Olsen, I. and Knowles, J.C. (2004) Phosphate Glasses for Tissue Engineering: Part 1. Processing and Characterisation of a Ternary-Based P2O5-CaO-Na2O Glass System. Biomaterials, 25, 491-499.
http://dx.doi.org/10.1016/S0142-9612(03)00546-5                                                                      eww141023lx