Transmission of Terahertz Acoustic Waves through Graphene-Semiconductor Layered Structures

Read  full  paper  at:

http://www.scirp.org/journal/PaperInformation.aspx?PaperID=50635#.VEcXbVfHRK0

ABSTRACT

We present a theoretical study of the acoustic properties of graphene-semiconductor layered structures. The transmission coefficient for longitudinal acoustic waves through the structure is evaluated by using the usual transfer matrix method. We find that the finite thickness of the graphene layer can affect significantly the transmission spectrum of the proposed structure. The features of the sound transmittance depend strongly on the number of the graphene layers. For mul-ti-layer graphene-semiconductor structures, the sound transmission spectrum looks very similar to that for an ideal superlattice. For such structures, terahertz acoustic forbidden gap can be observed even when a thick semiconductor layer is considered. These results are the consequence of the Bragg’s condition for sound waves. This study is relevant to the exploration of the acoustic properties of graphene-based layered structures and to the application of graphene as high-frequency acoustic devices.

Cite this paper

Zhang, S. , Xu, W. and Peeters, F. (2014) Transmission of Terahertz Acoustic Waves through Graphene-Semiconductor Layered Structures. Graphene, 3, 60-70. doi: 10.4236/graphene.2014.34009.

References

[1] Neto, A.H.C., Guinea, F., Peres, N.M.R., Novoselov, K.S. and Geim, A.K. (2009) The Electronic Properties of Grapheme. Reviews of Modern Physics, 81, 109-162. http://dx.doi.org/10.1103/RevModPhys.81.109
[2] Das Sarma, S., Geim, A.K., Kim, P. and MacDonald, A.H. (2007) Exploring Graphene—Recent Research Advances— Foreword. Solid State Communications, 143, 1-2. http://dx.doi.org/10.1016/j.ssc.2007.04.030
[3] Lee, C., Wei, X.D., Kysar, J.W. and Hone, J. (2008) Measurement of the Elastic Properties and Intrinsic Strength of Monolayer Graphene. Science, 321, 385-388. http://dx.doi.org/10.1126/science.1157996
[4] Morozov, S.V., Novoselov, K.S., Katsnelson, M.I., Schedin, F., Elias, D.C., Jaszczak, J.A. and Geim, A.K. (2008) Giant Intrinsic Carrier Mobilities in Graphene and Its Bilayer. Physical Review Letters, 100, Article ID: 016602. http://dx.doi.org/10.1103/PhysRevLett.100.016602
[5] Kuzmenko, A.B., van Heumen, E., Carbone, F. and van der Marel, D. (2008) Universal Optical Conductance of Graphite. Physical Review Letters, 100, 117401-117404. http://dx.doi.org/10.1103/PhysRevLett.100.117401
[6] Lin, Y.M., Dimitrakopoulos, C., Jenkins, K.A., Farmer, D.B., Chiu, H.Y., Grill, A. and Avouris, P. (2010) 100-GHz Transistors from Wafer-Scale Epitaxial Graphene. Science, 327, 662-662. http://dx.doi.org/10.1126/science.1184289
[7] Stampfer, C., Schurtenberger, E., Molitor, F., Güttinger, J., Ihn, T. and Ensslin, K. (2008) Tunable Graphene Single Electron Transistor. Nano Letters, 8, 2378-2383. http://dx.doi.org/10.1021/nl801225h
[8] Bae, S., Kim, H., Lee, Y., Xu, X., Park, J.S. and Zheng, Y. (2010) Roll-to-Roll Production of 30-Inch Graphene Films for Transparent Electrodes. Nature Nanotechnology, 5, 574-578. http://dx.doi.org/10.1038/nnano.2010.132
[9] Hogan, H. (2008) Fabricating Photonic Quantum Circuits in Silicon. Photonics Spectra, 42, 17-19.
[10] Xu, W., Gong, Y.P., Liu, L.W., Qin, H. and Shi, Y.L. (2011) Can Graphene Make Better HgCdTe Infrared Detectors? Nanoscale Research Letter, 6, 250. http://dx.doi.org/10.1186/1556-276X-6-250
[11] Stankovich, S., Dikin, D.A., Dommett, G.H.B., Kohlhaas, K.M., Zimney, E.J., Stach, E.A., Piner, R.D., Nguyen, S.T. and Ruoff, R.S. (2006) Graphene-Based Composite Materials. Nature, 442, 282-286. http://dx.doi.org/10.1038/nature04969
[12] Jusserand, B. and Cardona, M. (1989) Light Scattering in Solids V. Springer, Heidelberg, 49.
[13] Sapriel, J. and Djafari-Rouhani, B. (1989) Vibrations in Superlattices. Surface Science Reports, 10, 189-275. http://dx.doi.org/10.1016/0167-5729(89)90003-4
[14] Narayanamurti, V. (1981) Phonon Optics and Phonon Propagation in Semiconductors. Science, 213, 717-723. http://dx.doi.org/10.1126/science.213.4509.717
[15] Beardsley, R.P., Akimov, A.V., Henini, M. and Kent, A.J. (2010) Coherent Terahertz Sound Amplification and Spectral Line Narrowing in a Stark Ladder Superlattice. Physical Review Letter, 104, Article ID: 085501. http://dx.doi.org/10.1103/PhysRevLett.104.085501
[16] Cooper, D.R., D’Anjou, B., Ghattamaneni, N., Harack, B., Hilke, M., Horth, A., Majlis, N., Massicotte, M., Vandsburger, L., Whiteway, E. and Yu, V. (2012) Experimental Review of Graphene. ISRN Condensed Matter Physics, 2012, Article ID: 501686. http://dx.doi.org/10.5402/2012/501686
[17] El Boudouti, E.H., Djafari-Rouhani, B., Akjouj, A. and Dobrzyski, L. (2009) Acoustic Waves in Solid and Fluid Layered Materials. Surface Science Reports, 64, 471-594. http://dx.doi.org/10.1016/j.surfrep.2009.07.005
[18] Tamura, S., Hurley, D.C. and Wolfe, J.P. (1988) Acoustic-Phonon Propagation in Superlattices. Physical Review B, 38, 1427-1449. http://dx.doi.org/10.1103/PhysRevB.38.1427
[19] Wang, Y.Y., Ni, Z.H., Yu, T., Shen, Z.X., Wang, H.M., Wu, Y.H., Chen, W. and Wee, A.T.S. (2008) Raman Studies of Monolayer Graphene: The Substrate Effect. Journal of Physical Chemistry C, 112, 10637-10640. http://dx.doi.org/10.1021/jp8008404
[20] Yu, P.Y. and Cardona, M. (2001) Fundamentals of Semiconductors: Physics and Materials Properties. 3rd Edition, Springer, Berlin.
[21] Landau, L.D. and Lifschitz, E.M. (1986) Theory of Elasticity. Pergamon, Oxford.
[22] Mizuno, S. and Tamura, S.I. (1992) Theory of Acoustic-Phonon Transmission in Finite-Size Superlattice System. Physical Review B, 45, 734-741. http://dx.doi.org/10.1103/PhysRevB.45.734
[23] Mizuno, S. (2005) Acoustic Phonons in Nanowire Superlattices: Azimuthally Symmetric Torsional Modes. Physical Review B, 71, Article ID: 085303. http://dx.doi.org/10.1103/PhysRevB.71.085303
[24] Griffiths, D.J. and Steinke, C.A. (2001) Waves in Locally Periodic Media. American Journal Physics, 69, 137-154. http://dx.doi.org/10.1119/1.1308266
[25] Tamura, S.I. (1991) Resonant Transmission of Acoustic Phonons in Multisuperlattice Structures. Physical Review B, 43, Article ID: 12646. http://dx.doi.org/10.1103/PhysRevB.43.12646
[26] Madelung, O. (1991) Semiconductors: Group IV and III-V Compounds. Springer, Berlin. http://dx.doi.org/10.1007/978-3-642-45681-7
[27] See, E.G., Xu, W., Dong, H.M., Li, L.L., Yao, J.Q., Vasilopoulos, P. and Peeters, F.M. (2010) Optoelectronic Properties of Graphene in the Presence of Optical Phonon Scattering. Physical Review B, 82, Article ID: 125304. http://dx.doi.org/10.1103/PhysRevB.82.125304
[28] Mohr, M., Maultzsch, J., Dobardzic, E., Reich, S., Milosevic, I., Damnjanovic, M., Bosak, A., Krisch, M. and Thomsen, C. (2007) Phonon Dispersion of Graphite by Inelastic X-Ray Scattering. Physical Review B, 76, Article ID: 035439. http://dx.doi.org/10.1103/PhysRevB.76.035439
[29] Lanzillotti-Kimura, N.D., Fainstein, A., Lema?tre, A. and Jusserand, B. (2006) Nanowave Devices for Terahertz Acoustic Phonons. Applied Physics Letters, 88, Article ID: 083113. http://dx.doi.org/10.1063/1.2178415
[30] See, E.G., Cadelano, E., Palla, P.L., Giordano, S. and Colombo, L. (2009) Nonlinear Elasticity of Monolayer Graphene. Physical Review Letters, 102, Article ID: 235502. http://dx.doi.org/10.1103/PhysRevLett.102.235502
[31] Lanzillotti-Kimura, N.D., Fainstein, A., Huynh, A., Perrin, B., Jusserand, B., Miard, A. and Lema?tre, A. (2007) Coherent Generation of Acoustic Phonons in an Optical Microcavity. Physical Review Letters, 99, Article ID: 217405. http://dx.doi.org/10.1103/PhysRevLett.99.217405                                                                                           eww141022lx

留下评论